1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
// Heads up! Before working on this file you should read the parts
// of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
// and RFCs 8200 and 4861 for any IPv6 and NDISC work.

use core::cmp;
use managed::{ManagedSlice, ManagedMap};
#[cfg(not(feature = "proto-igmp"))]
use core::marker::PhantomData;

use {Error, Result};
use phy::{Device, DeviceCapabilities, RxToken, TxToken};
use time::{Duration, Instant};
use wire::pretty_print::PrettyPrinter;
use wire::{EthernetAddress, EthernetProtocol, EthernetFrame};
use wire::{IpAddress, IpProtocol, IpRepr, IpCidr};
#[cfg(feature = "proto-ipv6")]
use wire::{Ipv6Address, Ipv6Packet, Ipv6Repr, IPV6_MIN_MTU};
#[cfg(feature = "proto-ipv4")]
use wire::{Ipv4Address, Ipv4Packet, Ipv4Repr, IPV4_MIN_MTU};
#[cfg(feature = "proto-ipv4")]
use wire::{ArpPacket, ArpRepr, ArpOperation};
#[cfg(feature = "proto-ipv4")]
use wire::{Icmpv4Packet, Icmpv4Repr, Icmpv4DstUnreachable};
#[cfg(feature = "proto-igmp")]
use wire::{IgmpPacket, IgmpRepr, IgmpVersion};
#[cfg(feature = "proto-ipv6")]
use wire::{Icmpv6Packet, Icmpv6Repr, Icmpv6ParamProblem};
#[cfg(all(feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
use wire::IcmpRepr;
#[cfg(feature = "proto-ipv6")]
use wire::{Ipv6HopByHopHeader, Ipv6HopByHopRepr};
#[cfg(feature = "proto-ipv6")]
use wire::{Ipv6OptionRepr, Ipv6OptionFailureType};
#[cfg(feature = "proto-ipv6")]
use wire::{NdiscNeighborFlags, NdiscRepr};
#[cfg(all(feature = "proto-ipv6", feature = "socket-udp"))]
use wire::Icmpv6DstUnreachable;
#[cfg(feature = "socket-udp")]
use wire::{UdpPacket, UdpRepr};
#[cfg(feature = "socket-tcp")]
use wire::{TcpPacket, TcpRepr, TcpControl};

use socket::{Socket, SocketSet, AnySocket, PollAt};
#[cfg(feature = "socket-raw")]
use socket::RawSocket;
#[cfg(all(feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
use socket::IcmpSocket;
#[cfg(feature = "socket-udp")]
use socket::UdpSocket;
#[cfg(feature = "socket-tcp")]
use socket::TcpSocket;
use super::{NeighborCache, NeighborAnswer};
use super::Routes;

/// An Ethernet network interface.
///
/// The network interface logically owns a number of other data structures; to avoid
/// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
/// a `&mut [T]`, or `Vec<T>` if a heap is available.
pub struct Interface<'b, 'c, 'e, DeviceT: for<'d> Device<'d>> {
    device: DeviceT,
    inner:  InterfaceInner<'b, 'c, 'e>,
}

/// The device independent part of an Ethernet network interface.
///
/// Separating the device from the data required for prorcessing and dispatching makes
/// it possible to borrow them independently. For example, the tx and rx tokens borrow
/// the `device` mutably until they're used, which makes it impossible to call other
/// methods on the `Interface` in this time (since its `device` field is borrowed
/// exclusively). However, it is still possible to call methods on its `inner` field.
struct InterfaceInner<'b, 'c, 'e> {
    neighbor_cache:         NeighborCache<'b>,
    ethernet_addr:          EthernetAddress,
    ip_addrs:               ManagedSlice<'c, IpCidr>,
    routes:                 Routes<'e>,
    #[cfg(feature = "proto-igmp")]
    ipv4_multicast_groups:  ManagedMap<'e, Ipv4Address, ()>,
    #[cfg(not(feature = "proto-igmp"))]
    _ipv4_multicast_groups: PhantomData<&'e ()>,
    /// When to report for (all or) the next multicast group membership via IGMP
    #[cfg(feature = "proto-igmp")]
    igmp_report_state:      IgmpReportState,
    device_capabilities:    DeviceCapabilities,
}

/// A builder structure used for creating a Ethernet network
/// interface.
pub struct InterfaceBuilder <'b, 'c, 'e, DeviceT: for<'d> Device<'d>> {
    device:                 DeviceT,
    ethernet_addr:          Option<EthernetAddress>,
    neighbor_cache:         Option<NeighborCache<'b>>,
    ip_addrs:               ManagedSlice<'c, IpCidr>,
    routes:                 Routes<'e>,
    /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead.
    #[cfg(feature = "proto-igmp")]
    ipv4_multicast_groups:  ManagedMap<'e, Ipv4Address, ()>,
    #[cfg(not(feature = "proto-igmp"))]
    _ipv4_multicast_groups: PhantomData<&'e ()>,
}

impl<'b, 'c, 'e, DeviceT> InterfaceBuilder<'b, 'c, 'e, DeviceT>
        where DeviceT: for<'d> Device<'d> {
    /// Create a builder used for creating a network interface using the
    /// given device and address.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::collections::BTreeMap;
    /// use smoltcp::iface::{EthernetInterfaceBuilder, NeighborCache};
    /// # use smoltcp::phy::Loopback;
    /// use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress};
    ///
    /// let device = // ...
    /// # Loopback::new();
    /// let hw_addr = // ...
    /// # EthernetAddress::default();
    /// let neighbor_cache = // ...
    /// # NeighborCache::new(BTreeMap::new());
    /// let ip_addrs = // ...
    /// # [];
    /// let iface = EthernetInterfaceBuilder::new(device)
    ///         .ethernet_addr(hw_addr)
    ///         .neighbor_cache(neighbor_cache)
    ///         .ip_addrs(ip_addrs)
    ///         .finalize();
    /// ```
    pub fn new(device: DeviceT) -> Self {
        InterfaceBuilder {
            device:              device,
            ethernet_addr:       None,
            neighbor_cache:      None,
            ip_addrs:            ManagedSlice::Borrowed(&mut []),
            routes:              Routes::new(ManagedMap::Borrowed(&mut [])),
            #[cfg(feature = "proto-igmp")]
            ipv4_multicast_groups:   ManagedMap::Borrowed(&mut []),
            #[cfg(not(feature = "proto-igmp"))]
            _ipv4_multicast_groups:  PhantomData,
        }
    }

    /// Set the Ethernet address the interface will use. See also
    /// [ethernet_addr].
    ///
    /// # Panics
    /// This function panics if the address is not unicast.
    ///
    /// [ethernet_addr]: struct.EthernetInterface.html#method.ethernet_addr
    pub fn ethernet_addr(mut self, addr: EthernetAddress) -> Self {
        InterfaceInner::check_ethernet_addr(&addr);
        self.ethernet_addr = Some(addr);
        self
    }

    /// Set the IP addresses the interface will use. See also
    /// [ip_addrs].
    ///
    /// # Panics
    /// This function panics if any of the addresses are not unicast.
    ///
    /// [ip_addrs]: struct.EthernetInterface.html#method.ip_addrs
    pub fn ip_addrs<T>(mut self, ip_addrs: T) -> Self
        where T: Into<ManagedSlice<'c, IpCidr>>
    {
        let ip_addrs = ip_addrs.into();
        InterfaceInner::check_ip_addrs(&ip_addrs);
        self.ip_addrs = ip_addrs;
        self
    }

    /// Set the IP routes the interface will use. See also
    /// [routes].
    ///
    /// [routes]: struct.EthernetInterface.html#method.routes
    pub fn routes<T>(mut self, routes: T) -> InterfaceBuilder<'b, 'c, 'e, DeviceT>
        where T: Into<Routes<'e>>
    {
        self.routes = routes.into();
        self
    }

    /// Provide storage for multicast groups.
    ///
    /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`.
    /// Using [`join_multicast_group()`] will send initial membership reports.
    ///
    /// A previously destroyed interface can be recreated by reusing the multicast group
    /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`.
    /// Note that this way initial membership reports are **not** sent.
    ///
    /// [`join_multicast_group()`]: struct.EthernetInterface.html#method.join_multicast_group
    #[cfg(feature = "proto-igmp")]
    pub fn ipv4_multicast_groups<T>(mut self, ipv4_multicast_groups: T) -> Self
        where T: Into<ManagedMap<'e, Ipv4Address, ()>>
    {
        self.ipv4_multicast_groups = ipv4_multicast_groups.into();
        self
    }

    /// Set the Neighbor Cache the interface will use.
    pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'b>) -> Self {
        self.neighbor_cache = Some(neighbor_cache);
        self
    }

    /// Create a network interface using the previously provided configuration.
    ///
    /// # Panics
    /// If a required option is not provided, this function will panic. Required
    /// options are:
    ///
    /// - [ethernet_addr]
    /// - [neighbor_cache]
    ///
    /// [ethernet_addr]: #method.ethernet_addr
    /// [neighbor_cache]: #method.neighbor_cache
    pub fn finalize(self) -> Interface<'b, 'c, 'e, DeviceT> {
        match (self.ethernet_addr, self.neighbor_cache) {
            (Some(ethernet_addr), Some(neighbor_cache)) => {
                let device_capabilities = self.device.capabilities();

                Interface {
                    device: self.device,
                    inner: InterfaceInner {
                        ethernet_addr, device_capabilities, neighbor_cache,
                        ip_addrs: self.ip_addrs,
                        routes: self.routes,
                        #[cfg(feature = "proto-igmp")]
                        ipv4_multicast_groups: self.ipv4_multicast_groups,
                        #[cfg(not(feature = "proto-igmp"))]
                        _ipv4_multicast_groups:  PhantomData,
                        #[cfg(feature = "proto-igmp")]
                        igmp_report_state: IgmpReportState::Inactive,
                    }
                }
            },
            _ => panic!("a required option was not set"),
        }
    }
}

#[derive(Debug, PartialEq)]
enum Packet<'a> {
    None,
    #[cfg(feature = "proto-ipv4")]
    Arp(ArpRepr),
    #[cfg(feature = "proto-ipv4")]
    Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)),
    #[cfg(feature = "proto-igmp")]
    Igmp((Ipv4Repr, IgmpRepr)),
    #[cfg(feature = "proto-ipv6")]
    Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)),
    #[cfg(feature = "socket-raw")]
    Raw((IpRepr, &'a [u8])),
    #[cfg(feature = "socket-udp")]
    Udp((IpRepr, UdpRepr<'a>)),
    #[cfg(feature = "socket-tcp")]
    Tcp((IpRepr, TcpRepr<'a>))
}

impl<'a> Packet<'a> {
    fn neighbor_addr(&self) -> Option<IpAddress> {
        match self {
            &Packet::None => None,
            #[cfg(feature = "proto-ipv4")]
            &Packet::Arp(_) => None,
            #[cfg(feature = "proto-ipv4")]
            &Packet::Icmpv4((ref ipv4_repr, _)) => Some(ipv4_repr.dst_addr.into()),
            #[cfg(feature = "proto-igmp")]
            &Packet::Igmp((ref ipv4_repr, _)) => Some(ipv4_repr.dst_addr.into()),
            #[cfg(feature = "proto-ipv6")]
            &Packet::Icmpv6((ref ipv6_repr, _)) => Some(ipv6_repr.dst_addr.into()),
            #[cfg(feature = "socket-raw")]
            &Packet::Raw((ref ip_repr, _)) => Some(ip_repr.dst_addr()),
            #[cfg(feature = "socket-udp")]
            &Packet::Udp((ref ip_repr, _)) => Some(ip_repr.dst_addr()),
            #[cfg(feature = "socket-tcp")]
            &Packet::Tcp((ref ip_repr, _)) => Some(ip_repr.dst_addr())
        }
    }
}

#[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))]
fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize {
    // Send back as much of the original payload as will fit within
    // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for
    // more details.
    //
    // Since the entire network layer packet must fit within the minumum
    // MTU supported, the payload must not exceed the following:
    //
    // <min mtu> - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size
    cmp::min(len, mtu - header_len * 2 - 8)
}

#[cfg(feature = "proto-igmp")]
enum IgmpReportState {
    Inactive,
    ToGeneralQuery {
        version:    IgmpVersion,
        timeout:    Instant,
        interval:   Duration,
        next_index: usize
    },
    ToSpecificQuery {
        version:    IgmpVersion,
        timeout:    Instant,
        group:      Ipv4Address
    },
}

impl<'b, 'c, 'e, DeviceT> Interface<'b, 'c, 'e, DeviceT>
        where DeviceT: for<'d> Device<'d> {
    /// Get the Ethernet address of the interface.
    pub fn ethernet_addr(&self) -> EthernetAddress {
        self.inner.ethernet_addr
    }

    /// Set the Ethernet address of the interface.
    ///
    /// # Panics
    /// This function panics if the address is not unicast.
    pub fn set_ethernet_addr(&mut self, addr: EthernetAddress) {
        self.inner.ethernet_addr = addr;
        InterfaceInner::check_ethernet_addr(&self.inner.ethernet_addr);
    }

    /// Add an address to a list of subscribed multicast IP addresses.
    ///
    /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent`
    /// indicates whether an initial immediate announcement has been sent.
    pub fn join_multicast_group<T: Into<IpAddress>>(&mut self, addr: T, _timestamp: Instant) -> Result<bool> {
        match addr.into() {
            #[cfg(feature = "proto-igmp")]
            IpAddress::Ipv4(addr) => {
                let is_not_new = self.inner.ipv4_multicast_groups.insert(addr, ())
                    .map_err(|_| Error::Exhausted)?
                    .is_some();
                if is_not_new {
                    Ok(false)
                } else if let Some(pkt) =
                        self.inner.igmp_report_packet(IgmpVersion::Version2, addr) {
                    // Send initial membership report
                    let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
                    self.inner.dispatch(tx_token, _timestamp, pkt)?;
                    Ok(true)
                } else {
                    Ok(false)
                }
            }
            // Multicast is not yet implemented for other address families
            _ => Err(Error::Unaddressable)
        }
    }

    /// Remove an address from the subscribed multicast IP addresses.
    ///
    /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent`
    /// indicates whether an immediate leave packet has been sent.
    pub fn leave_multicast_group<T: Into<IpAddress>>(&mut self, addr: T, _timestamp: Instant) -> Result<bool> {
        match addr.into() {
            #[cfg(feature = "proto-igmp")]
            IpAddress::Ipv4(addr) => {
                let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr)
                    .is_none();
                if was_not_present {
                    Ok(false)
                } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) {
                    // Send group leave packet
                    let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
                    self.inner.dispatch(tx_token, _timestamp, pkt)?;
                    Ok(true)
                } else {
                    Ok(false)
                }
            }
            // Multicast is not yet implemented for other address families
            _ => Err(Error::Unaddressable)
        }
    }

    /// Check whether the interface listens to given destination multicast IP address.
    pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
        self.inner.has_multicast_group(addr)
    }

    /// Get the IP addresses of the interface.
    pub fn ip_addrs(&self) -> &[IpCidr] {
        self.inner.ip_addrs.as_ref()
    }

    /// Update the IP addresses of the interface.
    ///
    /// # Panics
    /// This function panics if any of the addresses are not unicast.
    pub fn update_ip_addrs<F: FnOnce(&mut ManagedSlice<'c, IpCidr>)>(&mut self, f: F) {
        f(&mut self.inner.ip_addrs);
        InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
    }

    /// Check whether the interface has the given IP address assigned.
    pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
        self.inner.has_ip_addr(addr)
    }

    /// Get the first IPv4 address of the interface.
    #[cfg(feature = "proto-ipv4")]
    pub fn ipv4_address(&self) -> Option<Ipv4Address> {
        self.inner.ipv4_address()
    }

    pub fn routes(&self) -> &Routes<'e> {
        &self.inner.routes
    }

    pub fn routes_mut(&mut self) -> &mut Routes<'e> {
        &mut self.inner.routes
    }

    /// Transmit packets queued in the given sockets, and receive packets queued
    /// in the device.
    ///
    /// This function returns a boolean value indicating whether any packets were
    /// processed or emitted, and thus, whether the readiness of any socket might
    /// have changed.
    ///
    /// # Errors
    /// This method will routinely return errors in response to normal network
    /// activity as well as certain boundary conditions such as buffer exhaustion.
    /// These errors are provided as an aid for troubleshooting, and are meant
    /// to be logged and ignored.
    ///
    /// As a special case, `Err(Error::Unrecognized)` is returned in response to
    /// packets containing any unsupported protocol, option, or form, which is
    /// a very common occurrence and on a production system it should not even
    /// be logged.
    pub fn poll(&mut self, sockets: &mut SocketSet, timestamp: Instant) -> Result<bool> {
        let mut readiness_may_have_changed = false;
        loop {
            let processed_any = self.socket_ingress(sockets, timestamp)?;
            let emitted_any   = self.socket_egress(sockets, timestamp)?;

            #[cfg(feature = "proto-igmp")]
            self.igmp_egress(timestamp)?;

            if processed_any || emitted_any {
                readiness_may_have_changed = true;
            } else {
                break
            }
        }
        Ok(readiness_may_have_changed)
    }

    /// Return a _soft deadline_ for calling [poll] the next time.
    /// The [Instant] returned is the time at which you should call [poll] next.
    /// It is harmless (but wastes energy) to call it before the [Instant], and
    /// potentially harmful (impacting quality of service) to call it after the
    /// [Instant]
    ///
    /// [poll]: #method.poll
    /// [Instant]: struct.Instant.html
    pub fn poll_at(&self, sockets: &SocketSet, timestamp: Instant) -> Option<Instant> {
        sockets.iter().filter_map(|socket| {
            let socket_poll_at = socket.poll_at();
            match socket.meta().poll_at(socket_poll_at, |ip_addr|
                self.inner.has_neighbor(&ip_addr, timestamp)) {
                    PollAt::Ingress => None,
                    PollAt::Time(instant) => Some(instant),
                    PollAt::Now => Some(Instant::from_millis(0)),
            }
        }).min()
    }

    /// Return an _advisory wait time_ for calling [poll] the next time.
    /// The [Duration] returned is the time left to wait before calling [poll] next.
    /// It is harmless (but wastes energy) to call it before the [Duration] has passed,
    /// and potentially harmful (impacting quality of service) to call it after the
    /// [Duration] has passed.
    ///
    /// [poll]: #method.poll
    /// [Duration]: struct.Duration.html
    pub fn poll_delay(&self, sockets: &SocketSet, timestamp: Instant) -> Option<Duration> {
        match self.poll_at(sockets, timestamp) {
            Some(poll_at) if timestamp < poll_at => {
                Some(poll_at - timestamp)
            }
            Some(_) => {
                Some(Duration::from_millis(0))
            }
            _ => None
        }
    }

    fn socket_ingress(&mut self, sockets: &mut SocketSet, timestamp: Instant) -> Result<bool> {
        let mut processed_any = false;
        loop {
            let &mut Self { ref mut device, ref mut inner } = self;
            let (rx_token, tx_token) = match device.receive() {
                None => break,
                Some(tokens) => tokens,
            };
            rx_token.consume(timestamp, |frame| {
                inner.process_ethernet(sockets, timestamp, &frame).map_err(|err| {
                    net_debug!("cannot process ingress packet: {}", err);
                    net_debug!("packet dump follows:\n{}",
                               PrettyPrinter::<EthernetFrame<&[u8]>>::new("", &frame));
                    err
                }).and_then(|response| {
                    processed_any = true;
                    inner.dispatch(tx_token, timestamp, response).map_err(|err| {
                        net_debug!("cannot dispatch response packet: {}", err);
                        err
                    })
                })
            })?;
        }
        Ok(processed_any)
    }

    fn socket_egress(&mut self, sockets: &mut SocketSet, timestamp: Instant) -> Result<bool> {
        let mut caps = self.device.capabilities();
        caps.max_transmission_unit -= EthernetFrame::<&[u8]>::header_len();

        let mut emitted_any = false;
        for mut socket in sockets.iter_mut() {
            if !socket.meta_mut().egress_permitted(|ip_addr|
                    self.inner.has_neighbor(&ip_addr, timestamp)) {
                continue
            }

            let mut neighbor_addr = None;
            let mut device_result = Ok(());
            let &mut Self { ref mut device, ref mut inner } = self;

            macro_rules! respond {
                ($response:expr) => ({
                    let response = $response;
                    neighbor_addr = response.neighbor_addr();
                    let tx_token = device.transmit().ok_or(Error::Exhausted)?;
                    device_result = inner.dispatch(tx_token, timestamp, response);
                    device_result
                })
            }

            let socket_result =
                match *socket {
                    #[cfg(feature = "socket-raw")]
                    Socket::Raw(ref mut socket) =>
                        socket.dispatch(&caps.checksum, |response|
                            respond!(Packet::Raw(response))),
                    #[cfg(all(feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
                    Socket::Icmp(ref mut socket) =>
                        socket.dispatch(&caps, |response| {
                            match response {
                                #[cfg(feature = "proto-ipv4")]
                                (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) =>
                                    respond!(Packet::Icmpv4((ipv4_repr, icmpv4_repr))),
                                #[cfg(feature = "proto-ipv6")]
                                (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) =>
                                    respond!(Packet::Icmpv6((ipv6_repr, icmpv6_repr))),
                                _ => Err(Error::Unaddressable)
                            }
                        }),
                    #[cfg(feature = "socket-udp")]
                    Socket::Udp(ref mut socket) =>
                        socket.dispatch(|response|
                            respond!(Packet::Udp(response))),
                    #[cfg(feature = "socket-tcp")]
                    Socket::Tcp(ref mut socket) =>
                        socket.dispatch(timestamp, &caps, |response|
                            respond!(Packet::Tcp(response))),
                    Socket::__Nonexhaustive(_) => unreachable!()
                };

            match (device_result, socket_result) {
                (Err(Error::Exhausted), _) => break,     // nowhere to transmit
                (Ok(()), Err(Error::Exhausted)) => (),   // nothing to transmit
                (Err(Error::Unaddressable), _) => {
                    // `NeighborCache` already takes care of rate limiting the neighbor discovery
                    // requests from the socket. However, without an additional rate limiting
                    // mechanism, we would spin on every socket that has yet to discover its
                    // neighboor.
                    socket.meta_mut().neighbor_missing(timestamp,
                        neighbor_addr.expect("non-IP response packet"));
                    break
                }
                (Err(err), _) | (_, Err(err)) => {
                    net_debug!("{}: cannot dispatch egress packet: {}",
                               socket.meta().handle, err);
                    return Err(err)
                }
                (Ok(()), Ok(())) => emitted_any = true
            }
        }
        Ok(emitted_any)
    }

    /// Depending on `igmp_report_state` and the therein contained
    /// timeouts, send IGMP membership reports.
    #[cfg(feature = "proto-igmp")]
    fn igmp_egress(&mut self, timestamp: Instant) -> Result<bool> {
        match self.inner.igmp_report_state {
            IgmpReportState::ToSpecificQuery { version, timeout, group }
                    if timestamp >= timeout => {
                if let Some(pkt) = self.inner.igmp_report_packet(version, group) {
                    // Send initial membership report
                    let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
                    self.inner.dispatch(tx_token, timestamp, pkt)?;
                }

                self.inner.igmp_report_state = IgmpReportState::Inactive;
                Ok(true)
            }
            IgmpReportState::ToGeneralQuery { version, timeout, interval, next_index }
                    if timestamp >= timeout => {
                let addr = self.inner.ipv4_multicast_groups
                    .iter()
                    .nth(next_index)
                    .map(|(addr, ())| *addr);

                match addr {
                    Some(addr) => {
                        if let Some(pkt) = self.inner.igmp_report_packet(version, addr) {
                            // Send initial membership report
                            let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
                            self.inner.dispatch(tx_token, timestamp, pkt)?;
                        }

                        let next_timeout = (timeout + interval).max(timestamp);
                        self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery {
                            version, timeout: next_timeout, interval, next_index: next_index + 1
                        };
                        Ok(true)
                    }

                    None => {
                        self.inner.igmp_report_state = IgmpReportState::Inactive;
                        Ok(false)
                    }
                }
            }
            _ => Ok(false)
        }
    }
}

impl<'b, 'c, 'e> InterfaceInner<'b, 'c, 'e> {
    fn check_ethernet_addr(addr: &EthernetAddress) {
        if addr.is_multicast() {
            panic!("Ethernet address {} is not unicast", addr)
        }
    }

    fn check_ip_addrs(addrs: &[IpCidr]) {
        for cidr in addrs {
            if !cidr.address().is_unicast() {
                panic!("IP address {} is not unicast", cidr.address())
            }
        }
    }

    /// Determine if the given `Ipv6Address` is the solicited node
    /// multicast address for a IPv6 addresses assigned to the interface.
    /// See [RFC 4291 § 2.7.1] for more details.
    ///
    /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    #[cfg(feature = "proto-ipv6")]
    pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool {
        self.ip_addrs.iter().find(|cidr| {
            match *cidr {
                &IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK=> {
                    // Take the lower order 24 bits of the IPv6 address and
                    // append those bits to FF02:0:0:0:0:1:FF00::/104.
                    addr.as_bytes()[14..] == cidr.address().as_bytes()[14..]
                }
                _ => false,
            }
        }).is_some()
    }

    /// Check whether the interface has the given IP address assigned.
    fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
        let addr = addr.into();
        self.ip_addrs.iter().any(|probe| probe.address() == addr)
    }

    /// Get the first IPv4 address of the interface.
    #[cfg(feature = "proto-ipv4")]
    pub fn ipv4_address(&self) -> Option<Ipv4Address> {
        self.ip_addrs.iter()
            .filter_map(
                |addr| match addr {
                    &IpCidr::Ipv4(cidr) => Some(cidr.address()),
                    _ => None,
                })
            .next()
    }

    /// Check whether the interface listens to given destination multicast IP address.
    ///
    /// If built without feature `proto-igmp` this function will
    /// always return `false`.
    pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
        match addr.into() {
            #[cfg(feature = "proto-igmp")]
            IpAddress::Ipv4(key) =>
                key == Ipv4Address::MULTICAST_ALL_SYSTEMS ||
                self.ipv4_multicast_groups.get(&key).is_some(),
            _ =>
                false,
        }
    }

    fn process_ethernet<'frame, T: AsRef<[u8]>>
                       (&mut self, sockets: &mut SocketSet, timestamp: Instant, frame: &'frame T) ->
                       Result<Packet<'frame>>
    {
        let eth_frame = EthernetFrame::new_checked(frame)?;

        // Ignore any packets not directed to our hardware address or any of the multicast groups.
        if !eth_frame.dst_addr().is_broadcast() &&
           !eth_frame.dst_addr().is_multicast() &&
           eth_frame.dst_addr() != self.ethernet_addr
        {
            return Ok(Packet::None)
        }

        match eth_frame.ethertype() {
            #[cfg(feature = "proto-ipv4")]
            EthernetProtocol::Arp =>
                self.process_arp(timestamp, &eth_frame),
            #[cfg(feature = "proto-ipv4")]
            EthernetProtocol::Ipv4 =>
                self.process_ipv4(sockets, timestamp, &eth_frame),
            #[cfg(feature = "proto-ipv6")]
            EthernetProtocol::Ipv6 =>
                self.process_ipv6(sockets, timestamp, &eth_frame),
            // Drop all other traffic.
            _ => Err(Error::Unrecognized),
        }
    }

    #[cfg(feature = "proto-ipv4")]
    fn process_arp<'frame, T: AsRef<[u8]>>
                  (&mut self, timestamp: Instant, eth_frame: &EthernetFrame<&'frame T>) ->
                  Result<Packet<'frame>>
    {
        let arp_packet = ArpPacket::new_checked(eth_frame.payload())?;
        let arp_repr = ArpRepr::parse(&arp_packet)?;

        match arp_repr {
            // Respond to ARP requests aimed at us, and fill the ARP cache from all ARP
            // requests and replies, to minimize the chance that we have to perform
            // an explicit ARP request.
            ArpRepr::EthernetIpv4 {
                operation, source_hardware_addr, source_protocol_addr, target_protocol_addr, ..
            } => {
                if source_protocol_addr.is_unicast() && source_hardware_addr.is_unicast() {
                    self.neighbor_cache.fill(source_protocol_addr.into(),
                                             source_hardware_addr,
                                             timestamp);
                } else {
                    // Discard packets with non-unicast source addresses.
                    net_debug!("non-unicast source address");
                    return Err(Error::Malformed)
                }

                if operation == ArpOperation::Request && self.has_ip_addr(target_protocol_addr) {
                    Ok(Packet::Arp(ArpRepr::EthernetIpv4 {
                        operation: ArpOperation::Reply,
                        source_hardware_addr: self.ethernet_addr,
                        source_protocol_addr: target_protocol_addr,
                        target_hardware_addr: source_hardware_addr,
                        target_protocol_addr: source_protocol_addr
                    }))
                } else {
                    Ok(Packet::None)
                }
            }

            _ => Err(Error::Unrecognized)
        }
    }

    #[cfg(all(any(feature = "proto-ipv4", feature = "proto-ipv6"), feature = "socket-raw"))]
    fn raw_socket_filter<'frame>(&mut self, sockets: &mut SocketSet, ip_repr: &IpRepr,
                                 ip_payload: &'frame [u8]) -> bool {
        let checksum_caps = self.device_capabilities.checksum.clone();
        let mut handled_by_raw_socket = false;

        // Pass every IP packet to all raw sockets we have registered.
        for mut raw_socket in sockets.iter_mut().filter_map(RawSocket::downcast) {
            if !raw_socket.accepts(&ip_repr) { continue }

            match raw_socket.process(&ip_repr, ip_payload, &checksum_caps) {
                // The packet is valid and handled by socket.
                Ok(()) => handled_by_raw_socket = true,
                // The socket buffer is full.
                Err(Error::Exhausted) => (),
                // Raw sockets don't validate the packets in any way.
                Err(_) => unreachable!(),
            }
        }
        handled_by_raw_socket
    }

    #[cfg(feature = "proto-ipv6")]
    fn process_ipv6<'frame, T: AsRef<[u8]>>
                   (&mut self, sockets: &mut SocketSet, timestamp: Instant,
                    eth_frame: &EthernetFrame<&'frame T>) ->
                   Result<Packet<'frame>>
    {
        let ipv6_packet = Ipv6Packet::new_checked(eth_frame.payload())?;
        let ipv6_repr = Ipv6Repr::parse(&ipv6_packet)?;

        if !ipv6_repr.src_addr.is_unicast() {
            // Discard packets with non-unicast source addresses.
            net_debug!("non-unicast source address");
            return Err(Error::Malformed)
        }

        if eth_frame.src_addr().is_unicast() {
            // Fill the neighbor cache from IP header of unicast frames.
            let ip_addr = IpAddress::Ipv6(ipv6_repr.src_addr);
            if self.in_same_network(&ip_addr) &&
                    self.neighbor_cache.lookup_pure(&ip_addr, timestamp).is_none() {
                self.neighbor_cache.fill(ip_addr, eth_frame.src_addr(), timestamp);
            }
        }

        let ip_payload = ipv6_packet.payload();

        #[cfg(feature = "socket-raw")]
        let handled_by_raw_socket = self.raw_socket_filter(sockets, &ipv6_repr.into(), ip_payload);
        #[cfg(not(feature = "socket-raw"))]
        let handled_by_raw_socket = false;

        self.process_nxt_hdr(sockets, timestamp, ipv6_repr, ipv6_repr.next_header,
                             handled_by_raw_socket, ip_payload)
    }

    /// Given the next header value forward the payload onto the correct process
    /// function.
    #[cfg(feature = "proto-ipv6")]
    fn process_nxt_hdr<'frame>
                   (&mut self, sockets: &mut SocketSet, timestamp: Instant, ipv6_repr: Ipv6Repr,
                    nxt_hdr: IpProtocol, handled_by_raw_socket: bool, ip_payload: &'frame [u8])
                   -> Result<Packet<'frame>>
    {
        match nxt_hdr {
            IpProtocol::Icmpv6 =>
                self.process_icmpv6(sockets, timestamp, ipv6_repr.into(), ip_payload),

            #[cfg(feature = "socket-udp")]
            IpProtocol::Udp =>
                self.process_udp(sockets, ipv6_repr.into(), ip_payload),

            #[cfg(feature = "socket-tcp")]
            IpProtocol::Tcp =>
                self.process_tcp(sockets, timestamp, ipv6_repr.into(), ip_payload),

            IpProtocol::HopByHop =>
                self.process_hopbyhop(sockets, timestamp, ipv6_repr, handled_by_raw_socket, ip_payload),

            #[cfg(feature = "socket-raw")]
            _ if handled_by_raw_socket =>
                Ok(Packet::None),

            _ => {
                // Send back as much of the original payload as we can.
                let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU,
                                                         ipv6_repr.buffer_len());
                let icmp_reply_repr = Icmpv6Repr::ParamProblem {
                    reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
                    // The offending packet is after the IPv6 header.
                    pointer: ipv6_repr.buffer_len() as u32,
                    header: ipv6_repr,
                    data:   &ip_payload[0..payload_len]
                };
                Ok(self.icmpv6_reply(ipv6_repr, icmp_reply_repr))
            },
        }
    }

    #[cfg(feature = "proto-ipv4")]
    fn process_ipv4<'frame, T: AsRef<[u8]>>
                   (&mut self, sockets: &mut SocketSet, timestamp: Instant,
                    eth_frame: &EthernetFrame<&'frame T>) ->
                   Result<Packet<'frame>>
    {
        let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload())?;
        let checksum_caps = self.device_capabilities.checksum.clone();
        let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, &checksum_caps)?;

        if !ipv4_repr.src_addr.is_unicast() {
            // Discard packets with non-unicast source addresses.
            net_debug!("non-unicast source address");
            return Err(Error::Malformed)
        }

        if eth_frame.src_addr().is_unicast() {
            // Fill the neighbor cache from IP header of unicast frames.
            let ip_addr = IpAddress::Ipv4(ipv4_repr.src_addr);
            if self.in_same_network(&ip_addr) {
                self.neighbor_cache.fill(ip_addr, eth_frame.src_addr(), timestamp);
            }
        }

        let ip_repr = IpRepr::Ipv4(ipv4_repr);
        let ip_payload = ipv4_packet.payload();

        #[cfg(feature = "socket-raw")]
        let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);

        if !self.has_ip_addr(ipv4_repr.dst_addr) && !self.has_multicast_group(ipv4_repr.dst_addr) {
            // Ignore IP packets not directed at us or any of the multicast groups
            return Ok(Packet::None)
        }

        match ipv4_repr.protocol {
            IpProtocol::Icmp =>
                self.process_icmpv4(sockets, ip_repr, ip_payload),

            #[cfg(feature = "proto-igmp")]
            IpProtocol::Igmp =>
                self.process_igmp(timestamp, ipv4_repr, ip_payload),

            #[cfg(feature = "socket-udp")]
            IpProtocol::Udp =>
                self.process_udp(sockets, ip_repr, ip_payload),

            #[cfg(feature = "socket-tcp")]
            IpProtocol::Tcp =>
                self.process_tcp(sockets, timestamp, ip_repr, ip_payload),

            #[cfg(feature = "socket-raw")]
            _ if handled_by_raw_socket =>
                Ok(Packet::None),

            _ => {
                // Send back as much of the original payload as we can.
                let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU,
                                                         ipv4_repr.buffer_len());
                let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
                    reason: Icmpv4DstUnreachable::ProtoUnreachable,
                    header: ipv4_repr,
                    data:   &ip_payload[0..payload_len]
                };
                Ok(self.icmpv4_reply(ipv4_repr, icmp_reply_repr))
            }
        }
    }

    /// Host duties of the **IGMPv2** protocol.
    ///
    /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries.
    /// Membership must not be reported immediately in order to avoid flooding the network
    /// after a query is broadcasted by a router; this is not currently done.
    #[cfg(feature = "proto-igmp")]
    fn process_igmp<'frame>(&mut self, timestamp: Instant, ipv4_repr: Ipv4Repr,
                            ip_payload: &'frame [u8]) -> Result<Packet<'frame>> {
        let igmp_packet = IgmpPacket::new_checked(ip_payload)?;
        let igmp_repr = IgmpRepr::parse(&igmp_packet)?;

        // FIXME: report membership after a delay
        match igmp_repr {
            IgmpRepr::MembershipQuery { group_addr, version, max_resp_time } => {
                // General query
                if group_addr.is_unspecified() &&
                        ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS {
                    // Are we member in any groups?
                    if self.ipv4_multicast_groups.iter().next().is_some() {
                        let interval = match version {
                            IgmpVersion::Version1 =>
                                Duration::from_millis(100),
                            IgmpVersion::Version2 => {
                                // No dependence on a random generator
                                // (see [#24](https://github.com/m-labs/smoltcp/issues/24))
                                // but at least spread reports evenly across max_resp_time.
                                let intervals = self.ipv4_multicast_groups.len() as u32 + 1;
                                max_resp_time / intervals
                            }
                        };
                        self.igmp_report_state = IgmpReportState::ToGeneralQuery {
                            version, timeout: timestamp + interval, interval, next_index: 0
                        };
                    }
                } else {
                    // Group-specific query
                    if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr {
                        // Don't respond immediately
                        let timeout = max_resp_time / 4;
                        self.igmp_report_state = IgmpReportState::ToSpecificQuery {
                            version, timeout: timestamp + timeout, group: group_addr
                        };
                    }
                }
            },
            // Ignore membership reports
            IgmpRepr::MembershipReport { .. } => (),
            // Ignore hosts leaving groups
            IgmpRepr::LeaveGroup{ .. } => (),
        }

        Ok(Packet::None)
    }

    #[cfg(feature = "proto-ipv6")]
    fn process_icmpv6<'frame>(&mut self, _sockets: &mut SocketSet, timestamp: Instant,
                              ip_repr: IpRepr, ip_payload: &'frame [u8]) -> Result<Packet<'frame>>
    {
        let icmp_packet = Icmpv6Packet::new_checked(ip_payload)?;
        let checksum_caps = self.device_capabilities.checksum.clone();
        let icmp_repr = Icmpv6Repr::parse(&ip_repr.src_addr(), &ip_repr.dst_addr(),
                                          &icmp_packet, &checksum_caps)?;

        #[cfg(feature = "socket-icmp")]
        let mut handled_by_icmp_socket = false;

        #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))]
        for mut icmp_socket in _sockets.iter_mut().filter_map(IcmpSocket::downcast) {
            if !icmp_socket.accepts(&ip_repr, &icmp_repr.into(), &checksum_caps) { continue }

            match icmp_socket.process(&ip_repr, &icmp_repr.into(), &checksum_caps) {
                // The packet is valid and handled by socket.
                Ok(()) => handled_by_icmp_socket = true,
                // The socket buffer is full.
                Err(Error::Exhausted) => (),
                // ICMP sockets don't validate the packets in any way.
                Err(_) => unreachable!(),
            }
        }

        match icmp_repr {
            // Respond to echo requests.
            Icmpv6Repr::EchoRequest { ident, seq_no, data } => {
                match ip_repr {
                    IpRepr::Ipv6(ipv6_repr) => {
                        let icmp_reply_repr = Icmpv6Repr::EchoReply {
                            ident:  ident,
                            seq_no: seq_no,
                            data:   data
                        };
                        Ok(self.icmpv6_reply(ipv6_repr, icmp_reply_repr))
                    },
                    _ => Err(Error::Unrecognized),
                }
            }

            // Ignore any echo replies.
            Icmpv6Repr::EchoReply { .. } => Ok(Packet::None),

            // Forward any NDISC packets to the ndisc packet handler
            Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr {
                IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(timestamp, ipv6_repr, repr),
                _ => Ok(Packet::None)
            },

            // Don't report an error if a packet with unknown type
            // has been handled by an ICMP socket
            #[cfg(feature = "socket-icmp")]
            _ if handled_by_icmp_socket => Ok(Packet::None),

            // FIXME: do something correct here?
            _ => Err(Error::Unrecognized),
        }
    }

    #[cfg(feature = "proto-ipv6")]
    fn process_ndisc<'frame>(&mut self, timestamp: Instant, ip_repr: Ipv6Repr,
                             repr: NdiscRepr<'frame>) -> Result<Packet<'frame>> {
        let packet = match repr {
            NdiscRepr::NeighborAdvert { lladdr, target_addr, flags } => {
                let ip_addr = ip_repr.src_addr.into();
                match lladdr {
                    Some(lladdr) if lladdr.is_unicast() && target_addr.is_unicast() => {
                        if flags.contains(NdiscNeighborFlags::OVERRIDE) {
                            self.neighbor_cache.fill(ip_addr, lladdr, timestamp)
                        } else {
                            if self.neighbor_cache.lookup_pure(&ip_addr, timestamp).is_none() {
                                    self.neighbor_cache.fill(ip_addr, lladdr, timestamp)
                            }
                        }
                    },
                    _ => (),
                }
                Ok(Packet::None)
            }
            NdiscRepr::NeighborSolicit { target_addr, lladdr, .. } => {
                match lladdr {
                    Some(lladdr) if lladdr.is_unicast() && target_addr.is_unicast() => {
                        self.neighbor_cache.fill(ip_repr.src_addr.into(), lladdr, timestamp)
                    },
                    _ => (),
                }
                if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) {
                    let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
                        flags: NdiscNeighborFlags::SOLICITED,
                        target_addr: target_addr,
                        lladdr: Some(self.ethernet_addr)
                    });
                    let ip_repr = Ipv6Repr {
                        src_addr: target_addr,
                        dst_addr: ip_repr.src_addr,
                        next_header: IpProtocol::Icmpv6,
                        hop_limit: 0xff,
                        payload_len: advert.buffer_len()
                    };
                    Ok(Packet::Icmpv6((ip_repr, advert)))
                } else {
                    Ok(Packet::None)
                }
            }
            _ => Ok(Packet::None)
        };
        packet
    }

    #[cfg(feature = "proto-ipv6")]
    fn process_hopbyhop<'frame>(&mut self, sockets: &mut SocketSet, timestamp: Instant,
                                ipv6_repr: Ipv6Repr, handled_by_raw_socket: bool,
                                ip_payload: &'frame [u8]) -> Result<Packet<'frame>>
    {
        let hbh_pkt = Ipv6HopByHopHeader::new_checked(ip_payload)?;
        let hbh_repr = Ipv6HopByHopRepr::parse(&hbh_pkt)?;
        for result in hbh_repr.options() {
            let opt_repr = result?;
            match opt_repr {
                Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (),
                Ipv6OptionRepr::Unknown { type_, .. } => {
                    match Ipv6OptionFailureType::from(type_) {
                        Ipv6OptionFailureType::Skip => (),
                        Ipv6OptionFailureType::Discard => {
                            return Ok(Packet::None);
                        },
                        _ => {
                            // FIXME(dlrobertson): Send an ICMPv6 parameter problem message
                            // here.
                            return Err(Error::Unrecognized);
                        }
                    }
                }
                _ => return Err(Error::Unrecognized),
            }
        }
        self.process_nxt_hdr(sockets, timestamp, ipv6_repr, hbh_repr.next_header,
                             handled_by_raw_socket, &ip_payload[hbh_repr.buffer_len()..])
    }

    #[cfg(feature = "proto-ipv4")]
    fn process_icmpv4<'frame>(&self, _sockets: &mut SocketSet, ip_repr: IpRepr,
                              ip_payload: &'frame [u8]) -> Result<Packet<'frame>>
    {
        let icmp_packet = Icmpv4Packet::new_checked(ip_payload)?;
        let checksum_caps = self.device_capabilities.checksum.clone();
        let icmp_repr = Icmpv4Repr::parse(&icmp_packet, &checksum_caps)?;

        #[cfg(feature = "socket-icmp")]
        let mut handled_by_icmp_socket = false;

        #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
        for mut icmp_socket in _sockets.iter_mut().filter_map(IcmpSocket::downcast) {
            if !icmp_socket.accepts(&ip_repr, &icmp_repr.into(), &checksum_caps) { continue }

            match icmp_socket.process(&ip_repr, &icmp_repr.into(), &checksum_caps) {
                // The packet is valid and handled by socket.
                Ok(()) => handled_by_icmp_socket = true,
                // The socket buffer is full.
                Err(Error::Exhausted) => (),
                // ICMP sockets don't validate the packets in any way.
                Err(_) => unreachable!(),
            }
        }

        match icmp_repr {
            // Respond to echo requests.
            #[cfg(feature = "proto-ipv4")]
            Icmpv4Repr::EchoRequest { ident, seq_no, data } => {
                let icmp_reply_repr = Icmpv4Repr::EchoReply {
                    ident:  ident,
                    seq_no: seq_no,
                    data:   data
                };
                match ip_repr {
                    IpRepr::Ipv4(ipv4_repr) => Ok(self.icmpv4_reply(ipv4_repr, icmp_reply_repr)),
                    _ => Err(Error::Unrecognized),
                }
            },

            // Ignore any echo replies.
            Icmpv4Repr::EchoReply { .. } => Ok(Packet::None),

            // Don't report an error if a packet with unknown type
            // has been handled by an ICMP socket
            #[cfg(feature = "socket-icmp")]
            _ if handled_by_icmp_socket => Ok(Packet::None),

            // FIXME: do something correct here?
            _ => Err(Error::Unrecognized),
        }
    }

    #[cfg(feature = "proto-ipv4")]
    fn icmpv4_reply<'frame, 'icmp: 'frame>
                   (&self, ipv4_repr: Ipv4Repr, icmp_repr: Icmpv4Repr<'icmp>) ->
                   Packet<'frame>
    {
        if ipv4_repr.dst_addr.is_unicast() {
            let ipv4_reply_repr = Ipv4Repr {
                src_addr:    ipv4_repr.dst_addr,
                dst_addr:    ipv4_repr.src_addr,
                protocol:    IpProtocol::Icmp,
                payload_len: icmp_repr.buffer_len(),
                hop_limit:   64
            };
            Packet::Icmpv4((ipv4_reply_repr, icmp_repr))
        } else {
            // Do not send any ICMP replies to a broadcast destination address.
            Packet::None
        }
    }

    #[cfg(feature = "proto-ipv6")]
    fn icmpv6_reply<'frame, 'icmp: 'frame>
                   (&self, ipv6_repr: Ipv6Repr, icmp_repr: Icmpv6Repr<'icmp>) ->
                   Packet<'frame>
    {
        if ipv6_repr.dst_addr.is_unicast() {
            let ipv6_reply_repr = Ipv6Repr {
                src_addr:    ipv6_repr.dst_addr,
                dst_addr:    ipv6_repr.src_addr,
                next_header: IpProtocol::Icmpv6,
                payload_len: icmp_repr.buffer_len(),
                hop_limit:   64
            };
            Packet::Icmpv6((ipv6_reply_repr, icmp_repr))
        } else {
            // Do not send any ICMP replies to a broadcast destination address.
            Packet::None
        }
    }

    #[cfg(feature = "socket-udp")]
    fn process_udp<'frame>(&self, sockets: &mut SocketSet,
                           ip_repr: IpRepr, ip_payload: &'frame [u8]) ->
                          Result<Packet<'frame>>
    {
        let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
        let udp_packet = UdpPacket::new_checked(ip_payload)?;
        let checksum_caps = self.device_capabilities.checksum.clone();
        let udp_repr = UdpRepr::parse(&udp_packet, &src_addr, &dst_addr, &checksum_caps)?;

        for mut udp_socket in sockets.iter_mut().filter_map(UdpSocket::downcast) {
            if !udp_socket.accepts(&ip_repr, &udp_repr) { continue }

            match udp_socket.process(&ip_repr, &udp_repr) {
                // The packet is valid and handled by socket.
                Ok(()) => return Ok(Packet::None),
                // The packet is malformed, or the socket buffer is full.
                Err(e) => return Err(e)
            }
        }

        // The packet wasn't handled by a socket, send an ICMP port unreachable packet.
        match ip_repr {
            #[cfg(feature = "proto-ipv4")]
            IpRepr::Ipv4(ipv4_repr) => {
                let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU,
                                                         ipv4_repr.buffer_len());
                let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable {
                    reason: Icmpv4DstUnreachable::PortUnreachable,
                    header: ipv4_repr,
                    data:   &ip_payload[0..payload_len]
                };
                Ok(self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr))
            },
            #[cfg(feature = "proto-ipv6")]
            IpRepr::Ipv6(ipv6_repr) => {
                let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU,
                                                         ipv6_repr.buffer_len());
                let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
                    reason: Icmpv6DstUnreachable::PortUnreachable,
                    header: ipv6_repr,
                    data:   &ip_payload[0..payload_len]
                };
                Ok(self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr))
            },
            IpRepr::Unspecified { .. } |
            IpRepr::__Nonexhaustive => Err(Error::Unaddressable),
        }
    }

    #[cfg(feature = "socket-tcp")]
    fn process_tcp<'frame>(&self, sockets: &mut SocketSet, timestamp: Instant,
                           ip_repr: IpRepr, ip_payload: &'frame [u8]) ->
                          Result<Packet<'frame>>
    {
        let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
        let tcp_packet = TcpPacket::new_checked(ip_payload)?;
        let checksum_caps = self.device_capabilities.checksum.clone();
        let tcp_repr = TcpRepr::parse(&tcp_packet, &src_addr, &dst_addr, &checksum_caps)?;

        for mut tcp_socket in sockets.iter_mut().filter_map(TcpSocket::downcast) {
            if !tcp_socket.accepts(&ip_repr, &tcp_repr) { continue }

            match tcp_socket.process(timestamp, &ip_repr, &tcp_repr) {
                // The packet is valid and handled by socket.
                Ok(reply) => return Ok(reply.map_or(Packet::None, Packet::Tcp)),
                // The packet is malformed, or doesn't match the socket state,
                // or the socket buffer is full.
                Err(e) => return Err(e)
            }
        }

        if tcp_repr.control == TcpControl::Rst {
            // Never reply to a TCP RST packet with another TCP RST packet.
            Ok(Packet::None)
        } else {
            // The packet wasn't handled by a socket, send a TCP RST packet.
            Ok(Packet::Tcp(TcpSocket::rst_reply(&ip_repr, &tcp_repr)))
        }
    }

    fn dispatch<Tx>(&mut self, tx_token: Tx, timestamp: Instant,
                    packet: Packet) -> Result<()>
        where Tx: TxToken
    {
        let checksum_caps = self.device_capabilities.checksum.clone();
        match packet {
            #[cfg(feature = "proto-ipv4")]
            Packet::Arp(arp_repr) => {
                let dst_hardware_addr =
                    match arp_repr {
                        ArpRepr::EthernetIpv4 { target_hardware_addr, .. } => target_hardware_addr,
                        _ => unreachable!()
                    };

                self.dispatch_ethernet(tx_token, timestamp, arp_repr.buffer_len(), |mut frame| {
                    frame.set_dst_addr(dst_hardware_addr);
                    frame.set_ethertype(EthernetProtocol::Arp);

                    let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
                    arp_repr.emit(&mut packet);
                })
            },
            #[cfg(feature = "proto-ipv4")]
            Packet::Icmpv4((ipv4_repr, icmpv4_repr)) => {
                self.dispatch_ip(tx_token, timestamp, IpRepr::Ipv4(ipv4_repr),
                                 |_ip_repr, payload| {
                    icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &checksum_caps);
                })
            }
            #[cfg(feature = "proto-igmp")]
            Packet::Igmp((ipv4_repr, igmp_repr)) => {
                self.dispatch_ip(tx_token, timestamp, IpRepr::Ipv4(ipv4_repr), |_ip_repr, payload| {
                    igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload));
                })
            }
            #[cfg(feature = "proto-ipv6")]
            Packet::Icmpv6((ipv6_repr, icmpv6_repr)) => {
                self.dispatch_ip(tx_token, timestamp, IpRepr::Ipv6(ipv6_repr),
                                 |ip_repr, payload| {
                    icmpv6_repr.emit(&ip_repr.src_addr(), &ip_repr.dst_addr(),
                                     &mut Icmpv6Packet::new_unchecked(payload), &checksum_caps);
                })
            }
            #[cfg(feature = "socket-raw")]
            Packet::Raw((ip_repr, raw_packet)) => {
                self.dispatch_ip(tx_token, timestamp, ip_repr, |_ip_repr, payload| {
                    payload.copy_from_slice(raw_packet);
                })
            }
            #[cfg(feature = "socket-udp")]
            Packet::Udp((ip_repr, udp_repr)) => {
                self.dispatch_ip(tx_token, timestamp, ip_repr, |ip_repr, payload| {
                    udp_repr.emit(&mut UdpPacket::new_unchecked(payload),
                                  &ip_repr.src_addr(), &ip_repr.dst_addr(),
                                  &checksum_caps);
                })
            }
            #[cfg(feature = "socket-tcp")]
            Packet::Tcp((ip_repr, mut tcp_repr)) => {
                let caps = self.device_capabilities.clone();
                self.dispatch_ip(tx_token, timestamp, ip_repr, |ip_repr, payload| {
                    // This is a terrible hack to make TCP performance more acceptable on systems
                    // where the TCP buffers are significantly larger than network buffers,
                    // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window)
                    // together with four 1500 B Ethernet receive buffers. If left untreated,
                    // this would result in our peer pushing our window and sever packet loss.
                    //
                    // I'm really not happy about this "solution" but I don't know what else to do.
                    if let Some(max_burst_size) = caps.max_burst_size {
                        let mut max_segment_size = caps.max_transmission_unit;
                        max_segment_size -= EthernetFrame::<&[u8]>::header_len();
                        max_segment_size -= ip_repr.buffer_len();
                        max_segment_size -= tcp_repr.header_len();

                        let max_window_size = max_burst_size * max_segment_size;
                        if tcp_repr.window_len as usize > max_window_size {
                            tcp_repr.window_len = max_window_size as u16;
                        }
                    }

                    tcp_repr.emit(&mut TcpPacket::new_unchecked(payload),
                                  &ip_repr.src_addr(), &ip_repr.dst_addr(),
                                  &checksum_caps);
                })
            }
            Packet::None => Ok(())
        }
    }

    fn dispatch_ethernet<Tx, F>(&mut self, tx_token: Tx, timestamp: Instant,
                                buffer_len: usize, f: F) -> Result<()>
        where Tx: TxToken, F: FnOnce(EthernetFrame<&mut [u8]>)
    {
        let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len);
        tx_token.consume(timestamp, tx_len, |tx_buffer| {
            debug_assert!(tx_buffer.as_ref().len() == tx_len);
            let mut frame = EthernetFrame::new_unchecked(tx_buffer.as_mut());
            frame.set_src_addr(self.ethernet_addr);

            f(frame);

            Ok(())
        })
    }

    fn in_same_network(&self, addr: &IpAddress) -> bool {
        self.ip_addrs
            .iter()
            .find(|cidr| cidr.contains_addr(addr))
            .is_some()
    }

    fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result<IpAddress> {
        // Send directly.
        if self.in_same_network(addr) || addr.is_broadcast() {
            return Ok(*addr)
        }

        // Route via a router.
        match self.routes.lookup(addr, timestamp) {
            Some(router_addr) => Ok(router_addr),
            None => Err(Error::Unaddressable),
        }
    }

    fn has_neighbor<'a>(&self, addr: &'a IpAddress, timestamp: Instant) -> bool {
        match self.route(addr, timestamp) {
            Ok(routed_addr) => {
                self.neighbor_cache
                    .lookup_pure(&routed_addr, timestamp)
                    .is_some()
            }
            Err(_) => false
        }
    }

    fn lookup_hardware_addr<Tx>(&mut self, tx_token: Tx, timestamp: Instant,
                                src_addr: &IpAddress, dst_addr: &IpAddress) ->
                               Result<(EthernetAddress, Tx)>
        where Tx: TxToken
    {
        if dst_addr.is_multicast() {
            let b = dst_addr.as_bytes();
            let hardware_addr =
                match dst_addr {
                    &IpAddress::Unspecified =>
                        None,
                    #[cfg(feature = "proto-ipv4")]
                    &IpAddress::Ipv4(_addr) =>
                        Some(EthernetAddress::from_bytes(&[
                            0x01, 0x00,
                            0x5e, b[1] & 0x7F,
                            b[2], b[3],
                        ])),
                    #[cfg(feature = "proto-ipv6")]
                    &IpAddress::Ipv6(_addr) =>
                        Some(EthernetAddress::from_bytes(&[
                            0x33, 0x33,
                            b[12], b[13],
                            b[14], b[15],
                        ])),
                    &IpAddress::__Nonexhaustive =>
                        unreachable!()
                };
            match hardware_addr {
                Some(hardware_addr) =>
                    // Destination is multicast
                    return Ok((hardware_addr, tx_token)),
                None =>
                    // Continue
                    (),
            }
        }

        let dst_addr = self.route(dst_addr, timestamp)?;

        match self.neighbor_cache.lookup(&dst_addr, timestamp) {
            NeighborAnswer::Found(hardware_addr) =>
                return Ok((hardware_addr, tx_token)),
            NeighborAnswer::RateLimited =>
                return Err(Error::Unaddressable),
            NeighborAnswer::NotFound => (),
        }

        match (src_addr, dst_addr) {
            #[cfg(feature = "proto-ipv4")]
            (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => {
                net_debug!("address {} not in neighbor cache, sending ARP request",
                           dst_addr);

                let arp_repr = ArpRepr::EthernetIpv4 {
                    operation: ArpOperation::Request,
                    source_hardware_addr: self.ethernet_addr,
                    source_protocol_addr: src_addr,
                    target_hardware_addr: EthernetAddress::BROADCAST,
                    target_protocol_addr: dst_addr,
                };

                self.dispatch_ethernet(tx_token, timestamp, arp_repr.buffer_len(), |mut frame| {
                    frame.set_dst_addr(EthernetAddress::BROADCAST);
                    frame.set_ethertype(EthernetProtocol::Arp);

                    arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
                })?;

                Err(Error::Unaddressable)
            }

            #[cfg(feature = "proto-ipv6")]
            (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
                net_debug!("address {} not in neighbor cache, sending Neighbor Solicitation",
                           dst_addr);

                let checksum_caps = self.device_capabilities.checksum.clone();

                let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
                    target_addr: src_addr,
                    lladdr: Some(self.ethernet_addr),
                });

                let ip_repr = IpRepr::Ipv6(Ipv6Repr {
                    src_addr: src_addr,
                    dst_addr: dst_addr.solicited_node(),
                    next_header: IpProtocol::Icmpv6,
                    payload_len: solicit.buffer_len(),
                    hop_limit: 0xff
                });

                self.dispatch_ip(tx_token, timestamp, ip_repr, |ip_repr, payload| {
                    solicit.emit(&ip_repr.src_addr(), &ip_repr.dst_addr(),
                                 &mut Icmpv6Packet::new_unchecked(payload), &checksum_caps);
                })?;

                Err(Error::Unaddressable)
            }

            _ => Err(Error::Unaddressable)
        }
    }

    fn dispatch_ip<Tx, F>(&mut self, tx_token: Tx, timestamp: Instant,
                          ip_repr: IpRepr, f: F) -> Result<()>
        where Tx: TxToken, F: FnOnce(IpRepr, &mut [u8])
    {
        let ip_repr = ip_repr.lower(&self.ip_addrs)?;
        let checksum_caps = self.device_capabilities.checksum.clone();

        let (dst_hardware_addr, tx_token) =
            self.lookup_hardware_addr(tx_token, timestamp,
                                      &ip_repr.src_addr(), &ip_repr.dst_addr())?;

        self.dispatch_ethernet(tx_token, timestamp, ip_repr.total_len(), |mut frame| {
            frame.set_dst_addr(dst_hardware_addr);
            match ip_repr {
                #[cfg(feature = "proto-ipv4")]
                IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4),
                #[cfg(feature = "proto-ipv6")]
                IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6),
                _ => return
            }

            ip_repr.emit(frame.payload_mut(), &checksum_caps);

            let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..];
            f(ip_repr, payload)
        })
    }

    #[cfg(feature = "proto-igmp")]
    fn igmp_report_packet<'any>(&self, version: IgmpVersion, group_addr: Ipv4Address) -> Option<Packet<'any>> {
        let iface_addr = self.ipv4_address()?;
        let igmp_repr = IgmpRepr::MembershipReport {
            group_addr,
            version,
        };
        let pkt = Packet::Igmp((Ipv4Repr {
            src_addr:    iface_addr,
            // Send to the group being reported
            dst_addr:    group_addr,
            protocol:    IpProtocol::Igmp,
            payload_len: igmp_repr.buffer_len(),
            hop_limit:   1,
            // TODO: add Router Alert IPv4 header option. See
            // [#183](https://github.com/m-labs/smoltcp/issues/183).
        }, igmp_repr));
        Some(pkt)
    }

    #[cfg(feature = "proto-igmp")]
    fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<Packet<'any>> {
        self.ipv4_address().map(|iface_addr| {
            let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
            let pkt = Packet::Igmp((Ipv4Repr {
                src_addr:    iface_addr,
                dst_addr:    Ipv4Address::MULTICAST_ALL_ROUTERS,
                protocol:    IpProtocol::Igmp,
                payload_len: igmp_repr.buffer_len(),
                hop_limit:   1,
            }, igmp_repr));
            pkt
        })
    }
}

#[cfg(test)]
mod test {
    #[cfg(feature = "proto-igmp")]
    use std::vec::Vec;
    use std::collections::BTreeMap;
    use {Result, Error};

    use super::InterfaceBuilder;
    use iface::{NeighborCache, EthernetInterface};
    use phy::{self, Loopback, ChecksumCapabilities};
    #[cfg(feature = "proto-igmp")]
    use phy::{Device, RxToken, TxToken};
    use time::Instant;
    use socket::SocketSet;
    #[cfg(feature = "proto-ipv4")]
    use wire::{ArpOperation, ArpPacket, ArpRepr};
    use wire::{EthernetAddress, EthernetFrame, EthernetProtocol};
    use wire::{IpAddress, IpCidr, IpProtocol, IpRepr};
    #[cfg(feature = "proto-ipv4")]
    use wire::{Ipv4Address, Ipv4Repr};
    #[cfg(feature = "proto-igmp")]
    use wire::Ipv4Packet;
    #[cfg(feature = "proto-ipv4")]
    use wire::{Icmpv4Repr, Icmpv4DstUnreachable};
    #[cfg(feature = "proto-igmp")]
    use wire::{IgmpPacket, IgmpRepr, IgmpVersion};
    #[cfg(all(feature = "socket-udp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
    use wire::{UdpPacket, UdpRepr};
    #[cfg(feature = "proto-ipv6")]
    use wire::{Ipv6Address, Ipv6Repr};
    #[cfg(feature = "proto-ipv6")]
    use wire::{Icmpv6Packet, Icmpv6Repr, Icmpv6ParamProblem};
    #[cfg(feature = "proto-ipv6")]
    use wire::{NdiscNeighborFlags, NdiscRepr};
    #[cfg(feature = "proto-ipv6")]
    use wire::{Ipv6HopByHopHeader, Ipv6Option, Ipv6OptionRepr};

    use super::Packet;

    fn create_loopback<'a, 'b, 'c>() -> (EthernetInterface<'static, 'b, 'c, Loopback>,
                                         SocketSet<'static, 'a, 'b>) {
        // Create a basic device
        let device = Loopback::new();
        let ip_addrs = [
            #[cfg(feature = "proto-ipv4")]
            IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
            #[cfg(feature = "proto-ipv6")]
            IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
            #[cfg(feature = "proto-ipv6")]
            IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
        ];

        let iface_builder = InterfaceBuilder::new(device)
            .ethernet_addr(EthernetAddress::default())
            .neighbor_cache(NeighborCache::new(BTreeMap::new()))
            .ip_addrs(ip_addrs);
        #[cfg(feature = "proto-igmp")]
        let iface_builder = iface_builder
            .ipv4_multicast_groups(BTreeMap::new());
        let iface = iface_builder
            .finalize();

        (iface, SocketSet::new(vec![]))
    }

    #[cfg(feature = "proto-igmp")]
    fn recv_all<'b>(iface: &mut EthernetInterface<'static, 'b, 'static, Loopback>, timestamp: Instant) -> Vec<Vec<u8>> {
        let mut pkts = Vec::new();
        while let Some((rx, _tx)) = iface.device.receive() {
            rx.consume(timestamp, |pkt| {
                pkts.push(pkt.iter().cloned().collect());
                Ok(())
            }).unwrap();
        }
        pkts
    }

    #[derive(Debug, PartialEq)]
    struct MockTxToken;

    impl phy::TxToken for MockTxToken {
        fn consume<R, F>(self, _: Instant, _: usize, _: F) -> Result<R>
                where F: FnOnce(&mut [u8]) -> Result<R> {
            Err(Error::__Nonexhaustive)
        }
    }

    #[test]
    #[should_panic(expected = "a required option was not set")]
    fn test_builder_initialization_panic() {
        InterfaceBuilder::new(Loopback::new()).finalize();
    }

    #[test]
    fn test_no_icmp_no_unicast() {
        let (mut iface, mut socket_set) = create_loopback();

        let mut eth_bytes = vec![0u8; 54];

        // Unknown Ipv4 Protocol
        //
        // Because the destination is the broadcast address
        // this should not trigger and Destination Unreachable
        // response. See RFC 1122 § 3.2.2.
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        let repr = IpRepr::Ipv4(Ipv4Repr {
            src_addr:    Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
            dst_addr:    Ipv4Address::BROADCAST,
            protocol:    IpProtocol::Unknown(0x0c),
            payload_len: 0,
            hop_limit:   0x40
        });
        #[cfg(feature = "proto-ipv6")]
        let repr = IpRepr::Ipv6(Ipv6Repr {
            src_addr:    Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
            dst_addr:    Ipv6Address::LINK_LOCAL_ALL_NODES,
            next_header: IpProtocol::Unknown(0x0c),
            payload_len: 0,
            hop_limit:   0x40
        });

        let frame = {
            let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
            frame.set_dst_addr(EthernetAddress::BROADCAST);
            frame.set_src_addr(EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]));
            frame.set_ethertype(EthernetProtocol::Ipv4);
            repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
            EthernetFrame::new_unchecked(&*frame.into_inner())
        };

        // Ensure that the unknown protocol frame does not trigger an
        // ICMP error response when the destination address is a
        // broadcast address
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
                   Ok(Packet::None));
        #[cfg(feature = "proto-ipv6")]
        assert_eq!(iface.inner.process_ipv6(&mut socket_set, Instant::from_millis(0), &frame),
                   Ok(Packet::None));
    }

    #[test]
    #[cfg(feature = "proto-ipv4")]
    fn test_icmp_error_no_payload() {
        static NO_BYTES: [u8; 0] = [];
        let (mut iface, mut socket_set) = create_loopback();

        let mut eth_bytes = vec![0u8; 34];

        // Unknown Ipv4 Protocol with no payload
        let repr = IpRepr::Ipv4(Ipv4Repr {
            src_addr:    Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
            dst_addr:    Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
            protocol:    IpProtocol::Unknown(0x0c),
            payload_len: 0,
            hop_limit:   0x40
        });

        // emit the above repr to a frame
        let frame = {
            let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
            frame.set_dst_addr(EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]));
            frame.set_src_addr(EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]));
            frame.set_ethertype(EthernetProtocol::Ipv4);
            repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
            EthernetFrame::new_unchecked(&*frame.into_inner())
        };

        // The expected Destination Unreachable response due to the
        // unknown protocol
        let icmp_repr = Icmpv4Repr::DstUnreachable {
            reason: Icmpv4DstUnreachable::ProtoUnreachable,
            header: Ipv4Repr {
                src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
                dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
                protocol: IpProtocol::Unknown(12),
                payload_len: 0,
                hop_limit: 64
            },
            data: &NO_BYTES
        };

        let expected_repr = Packet::Icmpv4((
            Ipv4Repr {
                src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
                dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
                protocol: IpProtocol::Icmp,
                payload_len: icmp_repr.buffer_len(),
                hop_limit: 64
            },
            icmp_repr
        ));

        // Ensure that the unknown protocol triggers an error response.
        // And we correctly handle no payload.
        assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
                   Ok(expected_repr));
    }

    #[test]
    #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))]
    fn test_icmp_error_port_unreachable() {
        static UDP_PAYLOAD: [u8; 12] = [
            0x48, 0x65, 0x6c, 0x6c,
            0x6f, 0x2c, 0x20, 0x57,
            0x6f, 0x6c, 0x64, 0x21
        ];
        let (iface, mut socket_set) = create_loopback();

        let mut udp_bytes_unicast = vec![0u8; 20];
        let mut udp_bytes_broadcast = vec![0u8; 20];
        let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast);
        let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast);

        let udp_repr = UdpRepr {
            src_port: 67,
            dst_port: 68,
            payload:  &UDP_PAYLOAD
        };

        let ip_repr = IpRepr::Ipv4(Ipv4Repr {
            src_addr:    Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
            dst_addr:    Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
            protocol:    IpProtocol::Udp,
            payload_len: udp_repr.buffer_len(),
            hop_limit:   64
        });

        // Emit the representations to a packet
        udp_repr.emit(&mut packet_unicast, &ip_repr.src_addr(),
                      &ip_repr.dst_addr(), &ChecksumCapabilities::default());

        let data = packet_unicast.into_inner();

        // The expected Destination Unreachable ICMPv4 error response due
        // to no sockets listening on the destination port.
        let icmp_repr = Icmpv4Repr::DstUnreachable {
            reason: Icmpv4DstUnreachable::PortUnreachable,
            header: Ipv4Repr {
                src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
                dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
                protocol: IpProtocol::Udp,
                payload_len: udp_repr.buffer_len(),
                hop_limit: 64
            },
            data: &data
        };
        let expected_repr = Packet::Icmpv4((
            Ipv4Repr {
                src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
                dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
                protocol: IpProtocol::Icmp,
                payload_len: icmp_repr.buffer_len(),
                hop_limit: 64
            },
            icmp_repr
        ));

        // Ensure that the unknown protocol triggers an error response.
        // And we correctly handle no payload.
        assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr, data),
                   Ok(expected_repr));

        let ip_repr = IpRepr::Ipv4(Ipv4Repr {
            src_addr:    Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
            dst_addr:    Ipv4Address::BROADCAST,
            protocol:    IpProtocol::Udp,
            payload_len: udp_repr.buffer_len(),
            hop_limit:   64
        });

        // Emit the representations to a packet
        udp_repr.emit(&mut packet_broadcast, &ip_repr.src_addr(),
                      &IpAddress::Ipv4(Ipv4Address::BROADCAST),
                      &ChecksumCapabilities::default());

        // Ensure that the port unreachable error does not trigger an
        // ICMP error response when the destination address is a
        // broadcast address and no socket is bound to the port.
        assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr,
                   packet_broadcast.into_inner()), Ok(Packet::None));
    }

    #[test]
    #[cfg(feature = "socket-udp")]
    fn test_handle_udp_broadcast() {
        use socket::{UdpSocket, UdpSocketBuffer, UdpPacketMetadata};
        use wire::IpEndpoint;

        static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];

        let (iface, mut socket_set) = create_loopback();

        let rx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]);
        let tx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]);

        let udp_socket = UdpSocket::new(rx_buffer, tx_buffer);

        let mut udp_bytes = vec![0u8; 13];
        let mut packet = UdpPacket::new_unchecked(&mut udp_bytes);

        let socket_handle = socket_set.add(udp_socket);

        #[cfg(feature = "proto-ipv6")]
        let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
        #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
        let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02);

        let udp_repr = UdpRepr {
            src_port: 67,
            dst_port: 68,
            payload:  &UDP_PAYLOAD
        };

        #[cfg(feature = "proto-ipv6")]
        let ip_repr = IpRepr::Ipv6(Ipv6Repr {
            src_addr:    src_ip,
            dst_addr:    Ipv6Address::LINK_LOCAL_ALL_NODES,
            next_header: IpProtocol::Udp,
            payload_len: udp_repr.buffer_len(),
            hop_limit:   0x40
        });
        #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
        let ip_repr = IpRepr::Ipv4(Ipv4Repr {
            src_addr:    src_ip,
            dst_addr:    Ipv4Address::BROADCAST,
            protocol:    IpProtocol::Udp,
            payload_len: udp_repr.buffer_len(),
            hop_limit:   0x40
        });

        {
            // Bind the socket to port 68
            let mut socket = socket_set.get::<UdpSocket>(socket_handle);
            assert_eq!(socket.bind(68), Ok(()));
            assert!(!socket.can_recv());
            assert!(socket.can_send());
        }

        udp_repr.emit(&mut packet, &ip_repr.src_addr(), &ip_repr.dst_addr(),
                      &ChecksumCapabilities::default());

        // Packet should be handled by bound UDP socket
        assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr, packet.into_inner()),
                   Ok(Packet::None));

        {
            // Make sure the payload to the UDP packet processed by process_udp is
            // appended to the bound sockets rx_buffer
            let mut socket = socket_set.get::<UdpSocket>(socket_handle);
            assert!(socket.can_recv());
            assert_eq!(socket.recv(), Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67))));
        }
    }

    #[test]
    #[cfg(feature = "socket-udp")]
    fn test_icmp_reply_size() {
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        use wire::IPV4_MIN_MTU as MIN_MTU;
        #[cfg(feature = "proto-ipv6")]
        use wire::Icmpv6DstUnreachable;
        #[cfg(feature = "proto-ipv6")]
        use wire::IPV6_MIN_MTU as MIN_MTU;

        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        const MAX_PAYLOAD_LEN: usize = 528;
        #[cfg(feature = "proto-ipv6")]
        const MAX_PAYLOAD_LEN: usize = 1192;

        let (iface, mut socket_set) = create_loopback();

        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        let src_addr = Ipv4Address([192, 168, 1, 1]);
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        let dst_addr = Ipv4Address([192, 168, 1, 2]);
        #[cfg(feature = "proto-ipv6")]
        let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
        #[cfg(feature = "proto-ipv6")]
        let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2);

        // UDP packet that if not tructated will cause a icmp port unreachable reply
        // to exeed the minimum mtu bytes in length.
        let udp_repr = UdpRepr {
            src_port: 67,
            dst_port: 68,
            payload: &[0x2a; MAX_PAYLOAD_LEN]
        };
        let mut bytes = vec![0xff; udp_repr.buffer_len()];
        let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
        udp_repr.emit(&mut packet, &src_addr.into(), &dst_addr.into(), &ChecksumCapabilities::default());
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        let ip_repr = Ipv4Repr {
            src_addr: src_addr,
            dst_addr: dst_addr,
            protocol: IpProtocol::Udp,
            hop_limit: 64,
            payload_len: udp_repr.buffer_len()
        };
        #[cfg(feature = "proto-ipv6")]
        let ip_repr = Ipv6Repr {
            src_addr: src_addr,
            dst_addr: dst_addr,
            next_header: IpProtocol::Udp,
            hop_limit: 64,
            payload_len: udp_repr.buffer_len()
        };
        let payload = packet.into_inner();

        // Expected packets
        #[cfg(feature = "proto-ipv6")]
        let expected_icmp_repr = Icmpv6Repr::DstUnreachable {
            reason: Icmpv6DstUnreachable::PortUnreachable,
            header: ip_repr,
            data:   &payload[..MAX_PAYLOAD_LEN]
        };
        #[cfg(feature = "proto-ipv6")]
        let expected_ip_repr = Ipv6Repr {
            src_addr: dst_addr,
            dst_addr: src_addr,
            next_header: IpProtocol::Icmpv6,
            hop_limit: 64,
            payload_len: expected_icmp_repr.buffer_len()
        };
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        let expected_icmp_repr = Icmpv4Repr::DstUnreachable {
            reason: Icmpv4DstUnreachable::PortUnreachable,
            header: ip_repr,
            data:   &payload[..MAX_PAYLOAD_LEN]
        };
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        let expected_ip_repr = Ipv4Repr {
            src_addr: dst_addr,
            dst_addr: src_addr,
            protocol: IpProtocol::Icmp,
            hop_limit: 64,
            payload_len: expected_icmpv4_repr.buffer_len()
        };

        // The expected packet does not exceed the IPV4_MIN_MTU
        assert_eq!(expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(), MIN_MTU);
        // The expected packet and the generated packet are equal
        #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
        assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr.into(), payload),
                   Ok(Packet::Icmpv4((expected_ip_repr, expected_icmp_repr))));
        #[cfg(feature = "proto-ipv6")]
        assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr.into(), payload),
                   Ok(Packet::Icmpv6((expected_ip_repr, expected_icmp_repr))));
    }

    #[test]
    #[cfg(feature = "proto-ipv4")]
    fn test_handle_valid_arp_request() {
        let (mut iface, mut socket_set) = create_loopback();

        let mut eth_bytes = vec![0u8; 42];

        let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
        let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
        let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
        let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);

        let repr = ArpRepr::EthernetIpv4 {
            operation: ArpOperation::Request,
            source_hardware_addr: remote_hw_addr,
            source_protocol_addr: remote_ip_addr,
            target_hardware_addr: EthernetAddress::default(),
            target_protocol_addr: local_ip_addr,
        };

        let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
        frame.set_dst_addr(EthernetAddress::BROADCAST);
        frame.set_src_addr(remote_hw_addr);
        frame.set_ethertype(EthernetProtocol::Arp);
        {
            let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
            repr.emit(&mut packet);
        }

        // Ensure an ARP Request for us triggers an ARP Reply
        assert_eq!(iface.inner.process_ethernet(&mut socket_set, Instant::from_millis(0), frame.into_inner()),
                   Ok(Packet::Arp(ArpRepr::EthernetIpv4 {
                       operation: ArpOperation::Reply,
                       source_hardware_addr: local_hw_addr,
                       source_protocol_addr: local_ip_addr,
                       target_hardware_addr: remote_hw_addr,
                       target_protocol_addr: remote_ip_addr
                   })));

        // Ensure the address of the requestor was entered in the cache
        assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
            &IpAddress::Ipv4(local_ip_addr), &IpAddress::Ipv4(remote_ip_addr)),
            Ok((remote_hw_addr, MockTxToken)));
    }

    #[test]
    #[cfg(feature = "proto-ipv6")]
    fn test_handle_valid_ndisc_request() {
        let (mut iface, mut socket_set) = create_loopback();

        let mut eth_bytes = vec![0u8; 86];

        let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1);
        let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2);
        let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
        let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);

        let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
            target_addr: local_ip_addr,
            lladdr: Some(remote_hw_addr),
        });
        let ip_repr = IpRepr::Ipv6(Ipv6Repr {
            src_addr: remote_ip_addr,
            dst_addr: local_ip_addr.solicited_node(),
            next_header: IpProtocol::Icmpv6,
            hop_limit: 0xff,
            payload_len: solicit.buffer_len()
        });

        let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
        frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00]));
        frame.set_src_addr(remote_hw_addr);
        frame.set_ethertype(EthernetProtocol::Ipv6);
        {
            ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
            solicit.emit(&remote_ip_addr.into(), &local_ip_addr.solicited_node().into(),
                         &mut Icmpv6Packet::new_unchecked(
                            &mut frame.payload_mut()[ip_repr.buffer_len()..]),
                         &ChecksumCapabilities::default());
        }

        let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
            flags: NdiscNeighborFlags::SOLICITED,
            target_addr: local_ip_addr,
            lladdr: Some(local_hw_addr)
        });

        let ipv6_expected = Ipv6Repr {
            src_addr: local_ip_addr,
            dst_addr: remote_ip_addr,
            next_header: IpProtocol::Icmpv6,
            hop_limit: 0xff,
            payload_len: icmpv6_expected.buffer_len()
        };

        // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement
        assert_eq!(iface.inner.process_ethernet(&mut socket_set, Instant::from_millis(0), frame.into_inner()),
                   Ok(Packet::Icmpv6((ipv6_expected, icmpv6_expected))));

        // Ensure the address of the requestor was entered in the cache
        assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
            &IpAddress::Ipv6(local_ip_addr), &IpAddress::Ipv6(remote_ip_addr)),
            Ok((remote_hw_addr, MockTxToken)));
    }

    #[test]
    #[cfg(feature = "proto-ipv4")]
    fn test_handle_other_arp_request() {
        let (mut iface, mut socket_set) = create_loopback();

        let mut eth_bytes = vec![0u8; 42];

        let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
        let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);

        let repr = ArpRepr::EthernetIpv4 {
            operation: ArpOperation::Request,
            source_hardware_addr: remote_hw_addr,
            source_protocol_addr: remote_ip_addr,
            target_hardware_addr: EthernetAddress::default(),
            target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]),
        };

        let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
        frame.set_dst_addr(EthernetAddress::BROADCAST);
        frame.set_src_addr(remote_hw_addr);
        frame.set_ethertype(EthernetProtocol::Arp);
        {
            let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
            repr.emit(&mut packet);
        }

        // Ensure an ARP Request for someone else does not trigger an ARP Reply
        assert_eq!(iface.inner.process_ethernet(&mut socket_set, Instant::from_millis(0), frame.into_inner()),
                   Ok(Packet::None));

        // Ensure the address of the requestor was entered in the cache
        assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
            &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])),
            &IpAddress::Ipv4(remote_ip_addr)),
            Ok((remote_hw_addr, MockTxToken)));
    }

    #[test]
    #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
    fn test_icmpv4_socket() {
        use socket::{IcmpSocket, IcmpEndpoint, IcmpSocketBuffer, IcmpPacketMetadata};
        use wire::Icmpv4Packet;

        let (iface, mut socket_set) = create_loopback();

        let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 24]);
        let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 24]);

        let icmpv4_socket = IcmpSocket::new(rx_buffer, tx_buffer);

        let socket_handle = socket_set.add(icmpv4_socket);

        let ident = 0x1234;
        let seq_no = 0x5432;
        let echo_data = &[0xff; 16];

        {
            let mut socket = socket_set.get::<IcmpSocket>(socket_handle);
            // Bind to the ID 0x1234
            assert_eq!(socket.bind(IcmpEndpoint::Ident(ident)), Ok(()));
        }

        // Ensure the ident we bound to and the ident of the packet are the same.
        let mut bytes = [0xff; 24];
        let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
        let echo_repr = Icmpv4Repr::EchoRequest{ ident, seq_no, data: echo_data };
        echo_repr.emit(&mut packet, &ChecksumCapabilities::default());
        let icmp_data = &packet.into_inner()[..];

        let ipv4_repr = Ipv4Repr {
            src_addr:    Ipv4Address::new(0x7f, 0x00, 0x00, 0x02),
            dst_addr:    Ipv4Address::new(0x7f, 0x00, 0x00, 0x01),
            protocol:    IpProtocol::Icmp,
            payload_len: 24,
            hop_limit:   64
        };
        let ip_repr = IpRepr::Ipv4(ipv4_repr);

        // Open a socket and ensure the packet is handled due to the listening
        // socket.
        {
            assert!(!socket_set.get::<IcmpSocket>(socket_handle).can_recv());
        }

        // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening
        let echo_reply = Icmpv4Repr::EchoReply{ ident, seq_no, data: echo_data };
        let ipv4_reply = Ipv4Repr {
            src_addr: ipv4_repr.dst_addr,
            dst_addr: ipv4_repr.src_addr,
            ..ipv4_repr
        };
        assert_eq!(iface.inner.process_icmpv4(&mut socket_set, ip_repr, icmp_data),
                   Ok(Packet::Icmpv4((ipv4_reply, echo_reply))));

        {
            let mut socket = socket_set.get::<IcmpSocket>(socket_handle);
            assert!(socket.can_recv());
            assert_eq!(socket.recv(),
                       Ok((&icmp_data[..],
                           IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02)))));
        }
    }

    #[test]
    #[cfg(feature = "proto-ipv6")]
    fn test_solicited_node_addrs() {
        let (mut iface, _) = create_loopback();
        let mut new_addrs = vec![IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64),
                                 IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64)];
        iface.update_ip_addrs(|addrs| {
            new_addrs.extend(addrs.to_vec());
            *addrs = From::from(new_addrs);
        });
        assert!(iface.inner.has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002)));
        assert!(iface.inner.has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff)));
        assert!(!iface.inner.has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003)));
    }

    #[test]
    #[cfg(feature = "proto-ipv6")]
    fn test_icmpv6_nxthdr_unknown() {
        let (mut iface, mut socket_set) = create_loopback();

        let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
        let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x01]);

        let mut eth_bytes = vec![0; 66];
        let payload = [0x12, 0x34, 0x56, 0x78];

        let ipv6_repr = Ipv6Repr {
            src_addr:    remote_ip_addr,
            dst_addr:    Ipv6Address::LOOPBACK,
            next_header: IpProtocol::HopByHop,
            payload_len: 12,
            hop_limit:   0x40,
        };

        let frame = {
            let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
            let ip_repr = IpRepr::Ipv6(ipv6_repr);
            frame.set_dst_addr(EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]));
            frame.set_src_addr(remote_hw_addr);
            frame.set_ethertype(EthernetProtocol::Ipv6);
            ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
            let mut offset = ipv6_repr.buffer_len();
            {
                let mut hbh_pkt =
                    Ipv6HopByHopHeader::new_unchecked(&mut frame.payload_mut()[offset..]);
                hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c));
                hbh_pkt.set_header_len(0);
                offset += 8;
                {
                    let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[..]);
                    Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt);
                }
                {
                    let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]);
                    Ipv6OptionRepr::Pad1.emit(&mut pad_pkt);
                }
            }
            frame.payload_mut()[offset..].copy_from_slice(&payload);
            EthernetFrame::new_unchecked(&*frame.into_inner())
        };

        let reply_icmp_repr = Icmpv6Repr::ParamProblem {
            reason:  Icmpv6ParamProblem::UnrecognizedNxtHdr,
            pointer: 40,
            header:  ipv6_repr,
            data:    &payload[..]
        };

        let reply_ipv6_repr = Ipv6Repr {
            src_addr:    Ipv6Address::LOOPBACK,
            dst_addr:    remote_ip_addr,
            next_header: IpProtocol::Icmpv6,
            payload_len: reply_icmp_repr.buffer_len(),
            hop_limit:   0x40,
        };

        // Ensure the unknown next header causes a ICMPv6 Parameter Problem
        // error message to be sent to the sender.
        assert_eq!(iface.inner.process_ipv6(&mut socket_set, Instant::from_millis(0), &frame),
                   Ok(Packet::Icmpv6((reply_ipv6_repr, reply_icmp_repr))));

        // Ensure the address of the requestor was entered in the cache
        assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
            &IpAddress::Ipv6(Ipv6Address::LOOPBACK),
            &IpAddress::Ipv6(remote_ip_addr)),
            Ok((remote_hw_addr, MockTxToken)));
    }

    #[test]
    #[cfg(feature = "proto-igmp")]
    fn test_handle_igmp() {
        fn recv_igmp<'b>(mut iface: &mut EthernetInterface<'static, 'b, 'static, Loopback>, timestamp: Instant) -> Vec<(Ipv4Repr, IgmpRepr)> {
            let checksum_caps = &iface.device.capabilities().checksum;
            recv_all(&mut iface, timestamp)
                .iter()
                .filter_map(|frame| {
                    let eth_frame = EthernetFrame::new_checked(frame).ok()?;
                    let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload()).ok()?;
                    let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, &checksum_caps).ok()?;
                    let ip_payload = ipv4_packet.payload();
                    let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?;
                    let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?;
                    Some((ipv4_repr, igmp_repr))
                })
                .collect::<Vec<_>>()
        }

        let groups = [
            Ipv4Address::new(224, 0, 0, 22),
            Ipv4Address::new(224, 0, 0, 56),
        ];

        let (mut iface, mut socket_set) = create_loopback();

        // Join multicast groups
        let timestamp = Instant::now();
        for group in &groups {
            iface.join_multicast_group(*group, timestamp)
                .unwrap();
        }

        let reports = recv_igmp(&mut iface, timestamp);
        assert_eq!(reports.len(), 2);
        for (i, group_addr) in groups.iter().enumerate() {
            assert_eq!(reports[i].0.protocol, IpProtocol::Igmp);
            assert_eq!(reports[i].0.dst_addr, *group_addr);
            assert_eq!(reports[i].1, IgmpRepr::MembershipReport {
                group_addr: *group_addr,
                version: IgmpVersion::Version2,
            });
        }

        // General query
        let timestamp = Instant::now();
        const GENERAL_QUERY_BYTES: &[u8] = &[
            0x01, 0x00, 0x5e, 0x00, 0x00, 0x01, 0x0a, 0x14,
            0x48, 0x01, 0x21, 0x01, 0x08, 0x00, 0x46, 0xc0,
            0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02,
            0x47, 0x43, 0xac, 0x16, 0x63, 0x04, 0xe0, 0x00,
            0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64,
            0xec, 0x8f, 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00
        ];
        {
            // Transmit GENERAL_QUERY_BYTES into loopback
            let tx_token = iface.device.transmit().unwrap();
            tx_token.consume(
                timestamp, GENERAL_QUERY_BYTES.len(),
                |buffer| {
                    buffer.copy_from_slice(GENERAL_QUERY_BYTES);
                    Ok(())
                }).unwrap();
        }
        // Trigger processing until all packets received through the
        // loopback have been processed, including responses to
        // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0
        // pkts that could be checked.
        iface.socket_ingress(&mut socket_set, timestamp).unwrap();

        // Leave multicast groups
        let timestamp = Instant::now();
        for group in &groups {
            iface.leave_multicast_group(group.clone(), timestamp)
                .unwrap();
        }

        let leaves = recv_igmp(&mut iface, timestamp);
        assert_eq!(leaves.len(), 2);
        for (i, group_addr) in groups.iter().cloned().enumerate() {
            assert_eq!(leaves[i].0.protocol, IpProtocol::Igmp);
            assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS);
            assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr });
        }
    }
}