1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use core::cmp::min;
use managed::Managed;

use {Error, Result};
use wire::{IpVersion, IpProtocol, Ipv4Repr, Ipv4Packet};
use socket::{IpRepr, Socket};
use storage::{Resettable, RingBuffer};

/// A buffered raw IP packet.
#[derive(Debug)]
pub struct PacketBuffer<'a> {
    size:    usize,
    payload: Managed<'a, [u8]>,
}

impl<'a> PacketBuffer<'a> {
    /// Create a buffered packet.
    pub fn new<T>(payload: T) -> PacketBuffer<'a>
            where T: Into<Managed<'a, [u8]>> {
        PacketBuffer {
            size:    0,
            payload: payload.into(),
        }
    }

    fn as_ref<'b>(&'b self) -> &'b [u8] {
        &self.payload[..self.size]
    }

    fn as_mut<'b>(&'b mut self) -> &'b mut [u8] {
        &mut self.payload[..self.size]
    }

    fn resize<'b>(&'b mut self, size: usize) -> Result<&'b mut Self> {
        if self.payload.len() >= size {
            self.size = size;
            Ok(self)
        } else {
            Err(Error::Truncated)
        }
    }
}

impl<'a> Resettable for PacketBuffer<'a> {
    fn reset(&mut self) {
        self.size = 0;
    }
}

/// A raw IP packet ring buffer.
pub type SocketBuffer<'a, 'b: 'a> = RingBuffer<'a, PacketBuffer<'b>>;

/// A raw IP socket.
///
/// A raw socket is bound to a specific IP protocol, and owns
/// transmit and receive packet buffers.
#[derive(Debug)]
pub struct RawSocket<'a, 'b: 'a> {
    debug_id:    usize,
    ip_version:  IpVersion,
    ip_protocol: IpProtocol,
    rx_buffer:   SocketBuffer<'a, 'b>,
    tx_buffer:   SocketBuffer<'a, 'b>,
}

impl<'a, 'b> RawSocket<'a, 'b> {
    /// Create a raw IP socket bound to the given IP version and datagram protocol,
    /// with the given buffers.
    pub fn new(ip_version: IpVersion, ip_protocol: IpProtocol,
               rx_buffer: SocketBuffer<'a, 'b>,
               tx_buffer: SocketBuffer<'a, 'b>) -> Socket<'a, 'b> {
        Socket::Raw(RawSocket {
            debug_id: 0,
            ip_version,
            ip_protocol,
            rx_buffer,
            tx_buffer,
        })
    }

    /// Return the debug identifier.
    #[inline]
    pub fn debug_id(&self) -> usize {
        self.debug_id
    }

    /// Set the debug identifier.
    ///
    /// The debug identifier is a number printed in socket trace messages.
    /// It could as well be used by the user code.
    pub fn set_debug_id(&mut self, id: usize) {
        self.debug_id = id;
    }

    /// Return the IP version the socket is bound to.
    #[inline]
    pub fn ip_version(&self) -> IpVersion {
        self.ip_version
    }

    /// Return the IP protocol the socket is bound to.
    #[inline]
    pub fn ip_protocol(&self) -> IpProtocol {
        self.ip_protocol
    }

    /// Check whether the transmit buffer is full.
    #[inline]
    pub fn can_send(&self) -> bool {
        !self.tx_buffer.is_full()
    }

    /// Check whether the receive buffer is not empty.
    #[inline]
    pub fn can_recv(&self) -> bool {
        !self.rx_buffer.is_empty()
    }

    /// Enqueue a packet to send, and return a pointer to its payload.
    ///
    /// This function returns `Err(Error::Exhausted)` if the size is greater than
    /// the transmit packet buffer size.
    ///
    /// If the buffer is filled in a way that does not match the socket's
    /// IP version or protocol, the packet will be silently dropped.
    ///
    /// **Note:** The IP header is parsed and reserialized, and may not match
    /// the header actually transmitted bit for bit.
    pub fn send(&mut self, size: usize) -> Result<&mut [u8]> {
        let packet_buf = self.tx_buffer.enqueue_one_with(|buf| buf.resize(size))?;
        net_trace!("[{}]:{}:{}: buffer to send {} octets",
                   self.debug_id, self.ip_version, self.ip_protocol,
                   packet_buf.size);
        Ok(packet_buf.as_mut())
    }

    /// Enqueue a packet to send, and fill it from a slice.
    ///
    /// See also [send](#method.send).
    pub fn send_slice(&mut self, data: &[u8]) -> Result<()> {
        self.send(data.len())?.copy_from_slice(data);
        Ok(())
    }

    /// Dequeue a packet, and return a pointer to the payload.
    ///
    /// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
    ///
    /// **Note:** The IP header is parsed and reserialized, and may not match
    /// the header actually received bit for bit.
    pub fn recv(&mut self) -> Result<&[u8]> {
        let packet_buf = self.rx_buffer.dequeue_one()?;
        net_trace!("[{}]:{}:{}: receive {} buffered octets",
                   self.debug_id, self.ip_version, self.ip_protocol,
                   packet_buf.size);
        Ok(&packet_buf.as_ref())
    }

    /// Dequeue a packet, and copy the payload into the given slice.
    ///
    /// See also [recv](#method.recv).
    pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<usize> {
        let buffer = self.recv()?;
        let length = min(data.len(), buffer.len());
        data[..length].copy_from_slice(&buffer[..length]);
        Ok(length)
    }

    pub(crate) fn accepts(&self, ip_repr: &IpRepr) -> bool {
        if ip_repr.version() != self.ip_version { return false }
        if ip_repr.protocol() != self.ip_protocol { return false }

        true
    }

    pub(crate) fn process(&mut self, ip_repr: &IpRepr, payload: &[u8]) -> Result<()> {
        debug_assert!(self.accepts(ip_repr));

        let header_len = ip_repr.buffer_len();
        let total_len = header_len + payload.len();
        let packet_buf = self.rx_buffer.enqueue_one_with(|buf| buf.resize(total_len))?;
        ip_repr.emit(&mut packet_buf.as_mut()[..header_len]);
        packet_buf.as_mut()[header_len..].copy_from_slice(payload);
        net_trace!("[{}]:{}:{}: receiving {} octets",
                   self.debug_id, self.ip_version, self.ip_protocol,
                   packet_buf.size);
        Ok(())
    }

    pub(crate) fn dispatch<F>(&mut self, emit: F) -> Result<()>
            where F: FnOnce((IpRepr, &[u8])) -> Result<()> {
        fn prepare(protocol: IpProtocol, buffer: &mut [u8]) -> Result<(IpRepr, &[u8])> {
            match IpVersion::of_packet(buffer.as_ref())? {
                IpVersion::Ipv4 => {
                    let mut packet = Ipv4Packet::new_checked(buffer.as_mut())?;
                    if packet.protocol() != protocol { return Err(Error::Unaddressable) }
                    packet.fill_checksum();

                    let packet = Ipv4Packet::new(&*packet.into_inner());
                    let ipv4_repr = Ipv4Repr::parse(&packet)?;
                    Ok((IpRepr::Ipv4(ipv4_repr), packet.payload()))
                }
                IpVersion::Unspecified => unreachable!(),
                IpVersion::__Nonexhaustive => unreachable!()
            }
        }

        let debug_id    = self.debug_id;
        let ip_protocol = self.ip_protocol;
        let ip_version  = self.ip_version;
        self.tx_buffer.dequeue_one_with(|packet_buf| {
            match prepare(ip_protocol, packet_buf.as_mut()) {
                Ok((ip_repr, raw_packet)) => {
                    net_trace!("[{}]:{}:{}: sending {} octets",
                               debug_id, ip_version, ip_protocol,
                               ip_repr.buffer_len() + raw_packet.len());
                    emit((ip_repr, raw_packet))
                }
                Err(error) => {
                    net_debug!("[{}]:{}:{}: dropping outgoing packet ({})",
                               debug_id, ip_version, ip_protocol,
                               error);
                    // Return Ok(()) so the packet is dequeued.
                    Ok(())
                }
            }
        })
    }

    pub(crate) fn poll_at(&self) -> Option<u64> {
        if self.tx_buffer.is_empty() {
            None
        } else {
            Some(0)
        }
    }
}

#[cfg(test)]
mod test {
    use wire::{Ipv4Address, IpRepr, Ipv4Repr};
    use super::*;

    fn buffer(packets: usize) -> SocketBuffer<'static, 'static> {
        let mut storage = vec![];
        for _ in 0..packets {
            storage.push(PacketBuffer::new(vec![0; 24]))
        }
        SocketBuffer::new(storage)
    }

    fn socket(rx_buffer: SocketBuffer<'static, 'static>,
              tx_buffer: SocketBuffer<'static, 'static>)
            -> RawSocket<'static, 'static> {
        match RawSocket::new(IpVersion::Ipv4, IpProtocol::Unknown(IP_PROTO),
                             rx_buffer, tx_buffer) {
            Socket::Raw(socket) => socket,
            _ => unreachable!()
        }
    }

    const IP_PROTO: u8 = 63;
    const HEADER_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr {
        src_addr: Ipv4Address([10, 0, 0, 1]),
        dst_addr: Ipv4Address([10, 0, 0, 2]),
        protocol: IpProtocol::Unknown(IP_PROTO),
        payload_len: 4
    });
    const PACKET_BYTES: [u8; 24] = [
        0x45, 0x00, 0x00, 0x18,
        0x00, 0x00, 0x40, 0x00,
        0x40, 0x3f, 0x00, 0x00,
        0x0a, 0x00, 0x00, 0x01,
        0x0a, 0x00, 0x00, 0x02,
        0xaa, 0x00, 0x00, 0xff
    ];
    const PACKET_PAYLOAD: [u8; 4] = [
        0xaa, 0x00, 0x00, 0xff
    ];

    #[test]
    fn test_send_truncated() {
        let mut socket = socket(buffer(0), buffer(1));
        assert_eq!(socket.send_slice(&[0; 32][..]), Err(Error::Truncated));
    }

    #[test]
    fn test_send_dispatch() {
        let mut socket = socket(buffer(0), buffer(1));

        assert!(socket.can_send());
        assert_eq!(socket.dispatch(|_| unreachable!()),
                   Err(Error::Exhausted));

        assert_eq!(socket.send_slice(&PACKET_BYTES[..]), Ok(()));
        assert_eq!(socket.send_slice(b""), Err(Error::Exhausted));
        assert!(!socket.can_send());

        assert_eq!(socket.dispatch(|(ip_repr, ip_payload)| {
            assert_eq!(ip_repr, HEADER_REPR);
            assert_eq!(ip_payload, &PACKET_PAYLOAD);
            Err(Error::Unaddressable)
        }), Err(Error::Unaddressable));
        assert!(!socket.can_send());

        assert_eq!(socket.dispatch(|(ip_repr, ip_payload)| {
            assert_eq!(ip_repr, HEADER_REPR);
            assert_eq!(ip_payload, &PACKET_PAYLOAD);
            Ok(())
        }), Ok(()));
        assert!(socket.can_send());
    }

    #[test]
    fn test_send_illegal() {
        let mut socket = socket(buffer(0), buffer(1));

        let mut wrong_version = PACKET_BYTES.clone();
        Ipv4Packet::new(&mut wrong_version).set_version(5);

        assert_eq!(socket.send_slice(&wrong_version[..]), Ok(()));
        assert_eq!(socket.dispatch(|_| unreachable!()),
                   Ok(()));

        let mut wrong_protocol = PACKET_BYTES.clone();
        Ipv4Packet::new(&mut wrong_protocol).set_protocol(IpProtocol::Tcp);

        assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(()));
        assert_eq!(socket.dispatch(|_| unreachable!()),
                   Ok(()));
    }

    #[test]
    fn test_recv_process() {
        let mut socket = socket(buffer(1), buffer(0));
        assert!(!socket.can_recv());

        let mut cksumd_packet = PACKET_BYTES.clone();
        Ipv4Packet::new(&mut cksumd_packet).fill_checksum();

        assert_eq!(socket.recv(), Err(Error::Exhausted));
        assert!(socket.accepts(&HEADER_REPR));
        assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD),
                   Ok(()));
        assert!(socket.can_recv());

        assert!(socket.accepts(&HEADER_REPR));
        assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD),
                   Err(Error::Exhausted));
        assert_eq!(socket.recv(), Ok(&cksumd_packet[..]));
        assert!(!socket.can_recv());
    }

    #[test]
    fn test_recv_truncated_slice() {
        let mut socket = socket(buffer(1), buffer(0));

        assert!(socket.accepts(&HEADER_REPR));
        assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD),
                   Ok(()));

        let mut slice = [0; 4];
        assert_eq!(socket.recv_slice(&mut slice[..]), Ok(4));
        assert_eq!(&slice, &PACKET_BYTES[..slice.len()]);
    }

    #[test]
    fn test_recv_truncated_packet() {
        let mut socket = socket(buffer(1), buffer(0));

        let mut buffer = vec![0; 128];
        buffer[..PACKET_BYTES.len()].copy_from_slice(&PACKET_BYTES[..]);

        assert!(socket.accepts(&HEADER_REPR));
        assert_eq!(socket.process(&HEADER_REPR, &buffer),
                   Err(Error::Truncated));
    }

    #[test]
    fn test_doesnt_accept_wrong_proto() {
        let socket = match RawSocket::new(IpVersion::Ipv4,
                                          IpProtocol::Unknown(IP_PROTO+1),
                                          buffer(1), buffer(1)) {
            Socket::Raw(socket) => socket,
            _ => unreachable!()
        };
        assert!(!socket.accepts(&HEADER_REPR));
    }
}