1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//! Various random generation for basic types
//!
//! This implement a simple linear shifting based random generator,
//! it only produces pseudo random and shouldn't be used in any other
//! settings than here (where the quality of randomness doesn't really matter too much)
//!
//! This is just a starting point, in a later version:
//! * optimise the random number generator
//! * remove the biases
//! * add some multiple cases f32/f64 generators

use core::num::{
    NonZeroIsize, NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
};

/// Seed of random generation
///
/// There should be only one instance of this for a given instance of a test suite,
/// so that in case of issues, the printed seed of the failed attempt can be re-used
/// as test driven development
///
/// All pseudo random generators need to be derived from this
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Seed(u128);

/// A pseudo random generator at a given time
///
/// it can created from seed using `R::from_seed`, or
/// from another pseudo random generator using `.sub()`
/// as to create a hierarchy (or a tree) of generator.
///
pub struct R(u64, u64);

impl Seed {
    /// Create a new random seed, using the system time and the thread-id.
    ///
    /// Whilst this is not particularly random, we just need a little randomization
    /// not a full blown unguessable entropy. The quality of this randomness
    /// is not particularly important or interesting.
    #[allow(clippy::new_without_default)]
    pub fn new() -> Self {
        use std::collections::hash_map::DefaultHasher;
        use std::hash::{Hash, Hasher};
        use std::time::SystemTime;

        let mut hasher = DefaultHasher::new();

        // get the system time and hash it
        let now = SystemTime::now();
        now.hash(&mut hasher);
        let r1 = u128::from(hasher.finish());

        // append some randomized stuff on top
        let tid = std::thread::current().id();
        tid.hash(&mut hasher);
        let r2 = u128::from(hasher.finish());

        let r = (r1 << 64) | r2;
        Seed::from(r)
    }
}

impl From<u128> for Seed {
    fn from(u: u128) -> Seed {
        Seed(u)
    }
}

impl std::str::FromStr for Seed {
    type Err = &'static str;

    fn from_str(str: &str) -> Result<Self, Self::Err> {
        let chunk = str
            .split('-')
            .map(|e| u32::from_str_radix(e, 16))
            .collect::<Vec<_>>();
        if chunk.len() == 4 {
            match (&chunk[0], &chunk[1], &chunk[2], &chunk[3]) {
                (Ok(a), Ok(b), Ok(c), Ok(d)) => {
                    let seed =
                        (*a as u128) << 96 | (*b as u128) << 64 | (*c as u128) << 32 | (*d as u128);
                    Ok(Seed::from(seed))
                }
                (Err(_), _, _, _) => Err("cannot parse 1st element as hexadecimal integer"),
                (_, Err(_), _, _) => Err("cannot parse 2nd element as hexadecimal integer"),
                (_, _, Err(_), _) => Err("cannot parse 3rd element as hexadecimal integer"),
                (_, _, _, Err(_)) => Err("cannot parse 4th element as hexadecimal integer"),
            }
        } else {
            Err("expecting 4 hexadecimal values separated by -")
        }
    }
}

impl std::fmt::Display for Seed {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let a0 = (self.0 >> 96) as u32;
        let a1 = (self.0 >> 64) as u32;
        let a2 = (self.0 >> 32) as u32;
        let a3 = self.0 as u32;
        write!(f, "{:08X}-{:08X}-{:08X}-{:08X}", a0, a1, a2, a3)
    }
}

const MUL_FACTOR: u64 = 636_4136_2238_4679_3005;

impl R {
    pub fn new() -> (Seed, Self) {
        let seed = Seed::new();
        let r = Self::from_seed(seed);
        (seed, r)
    }

    pub fn sub(&mut self) -> Self {
        let r0 = self.0;
        let r1 = self.1;
        let n = self.next();
        R(r0.wrapping_mul(n as u64), r1.wrapping_add(n as u64))
    }

    pub fn from_seed(seed: Seed) -> Self {
        R((seed.0 >> 64) as u64, seed.0 as u64)
    }

    pub(crate) fn next(&mut self) -> u32 {
        let old_state = self.0;
        self.0 = old_state.wrapping_mul(MUL_FACTOR).wrapping_add(self.1 | 1);
        let xor_shifted = (((old_state >> 18) ^ old_state) >> 27) as u32;
        let rot = (old_state >> 59) as u32;
        xor_shifted.rotate_right(rot)
    }

    pub fn next_bytes(&mut self, buf: &mut [u8]) {
        const SZ_NEXT: usize = 4;
        let chunk = buf.len() / SZ_NEXT;
        let rem = buf.len() % SZ_NEXT;
        for i in 0..chunk {
            let start = i * SZ_NEXT;
            let out = self.next().to_le_bytes();
            buf[start..start + SZ_NEXT].copy_from_slice(&out)
        }

        if rem > 0 {
            let last = self.next().to_le_bytes();
            let start = buf.len() - rem;
            buf[start..].copy_from_slice(&last[0..rem])
        }
    }

    pub fn ascii(&mut self) -> char {
        loop {
            let v = self.next() % 0x80;
            if let Some(c) = std::char::from_u32(v) {
                break c;
            }
        }
    }

    pub fn codepoint(&mut self) -> char {
        loop {
            let v = self.next() % 0x11_0000;
            if let Some(c) = std::char::from_u32(v) {
                break c;
            }
        }
    }

    pub fn bool(&mut self) -> bool {
        (self.next() % 2) == 1
    }

    pub fn num<T: NumPrimitive>(&mut self) -> T {
        T::num(self)
    }

    pub fn num_range<T: NumPrimitive>(&mut self, min_value: T, max_value: T) -> T {
        T::num_range(self, min_value, max_value)
    }

    pub fn array_num<T: NumPrimitive>(&mut self, buf: &mut [T]) {
        for b in buf.iter_mut() {
            *b = T::num(self)
        }
    }

    pub fn array_num_range<T: NumPrimitive>(&mut self, min_value: T, max_value: T, buf: &mut [T]) {
        for b in buf.iter_mut() {
            *b = T::num_range(self, min_value, max_value)
        }
    }
}

/// Various instance of numbers generation for primitive num
/// types (u8, u16, ..., u128, i8, ..., NonZeroU8, ...)
pub trait NumPrimitive: Copy {
    /// Return a new value in the whole possible domain of Self
    fn num(r: &mut R) -> Self;

    /// Return a new value between min_value and max_value (both included)
    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self;
}

/*
impl NumPrimitive for char {
    fn num(r: &mut R) -> Self {
    }
    fn range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        loop {
            let m = u32::from(min_value);
            let diff = u32::from(max_value) - m;
            let r = r.next() % diff;
            match (m + r).try_into() {
                Ok(c) => break c,
                Err(_) => {}
            }
        }
    }
}
*/

impl NumPrimitive for u8 {
    fn num(r: &mut R) -> Self {
        r.next() as u8
    }
    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        let diff = max_value - min_value + 1;
        min_value + (r.next() as Self % diff)
    }
}

impl NumPrimitive for u16 {
    fn num(r: &mut R) -> Self {
        r.next() as Self
    }

    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        let diff = max_value - min_value + 1;
        min_value + (r.next() as Self % diff)
    }
}

impl NumPrimitive for u32 {
    fn num(r: &mut R) -> Self {
        r.next()
    }
    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        let diff = max_value - min_value + 1;
        min_value + (u32::num(r) % diff)
    }
}

impl NumPrimitive for u64 {
    fn num(r: &mut R) -> Self {
        let v1 = r.next() as u64;
        let v2 = r.next() as u64;
        v1 << 32 | v2
    }
    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        let diff = max_value - min_value + 1;
        if diff > 0xffff_ffff {
            let v = Self::num(r) % diff;
            min_value + v
        } else {
            min_value + (r.next() as Self % diff)
        }
    }
}

impl NumPrimitive for u128 {
    fn num(r: &mut R) -> Self {
        let v1 = r.next() as u128;
        let v2 = r.next() as u128;
        let v3 = r.next() as u128;
        let v4 = r.next() as u128;
        v1 << 96 | v2 << 64 | v3 << 32 | v4
    }
    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        let diff = max_value - min_value + 1;
        if diff > 0xffff_ffff {
            let v = Self::num(r) % diff;
            min_value + v
        } else {
            min_value + (r.next() as Self % diff)
        }
    }
}

impl NumPrimitive for usize {
    fn num(r: &mut R) -> Self {
        if std::mem::size_of::<usize>() <= 4 {
            u32::num(r) as usize
        } else if std::mem::size_of::<usize>() == 8 {
            u64::num(r) as usize
        } else {
            u128::num(r) as usize
        }
    }
    fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
        assert!(min_value <= max_value);
        let diff = max_value - min_value + 1;
        if diff > 0xffff_ffff {
            let v = Self::num(r) % diff;
            min_value + v
        } else {
            min_value + (r.next() as Self % diff)
        }
    }
}

// unsigned -> signed cast based implementations

macro_rules! define_NumPrimitive_impl_signed {
    ($signed_ty:ty, $unsigned_ty:ty) => {
        impl NumPrimitive for $signed_ty {
            fn num(r: &mut R) -> Self {
                <$unsigned_ty>::num(r) as $signed_ty
            }
            fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
                assert!(min_value <= max_value);
                <$unsigned_ty>::num_range(r, min_value as $unsigned_ty, max_value as $unsigned_ty)
                    as $signed_ty
            }
        }
    };
}

define_NumPrimitive_impl_signed!(i8, u8);
define_NumPrimitive_impl_signed!(i16, u16);
define_NumPrimitive_impl_signed!(i32, u32);
define_NumPrimitive_impl_signed!(i64, u64);
define_NumPrimitive_impl_signed!(i128, u128);
define_NumPrimitive_impl_signed!(isize, usize);

// retry Ty -> NonZeroTy convertion based implementation

macro_rules! define_NumPrimitive_impl_nonzero {
    ($non_zero_ty:ty, $src_ty:ty) => {
        impl NumPrimitive for $non_zero_ty {
            fn num(r: &mut R) -> Self {
                loop {
                    match <$non_zero_ty>::new(<$src_ty>::num(r)) {
                        None => {}
                        Some(v) => break v,
                    }
                }
            }
            fn num_range(r: &mut R, min_value: Self, max_value: Self) -> Self {
                assert!(min_value <= max_value);
                loop {
                    match <$non_zero_ty>::new(<$src_ty>::num_range(
                        r,
                        min_value.get(),
                        max_value.get(),
                    )) {
                        None => {}
                        Some(v) => break v,
                    }
                }
            }
        }
    };
}

define_NumPrimitive_impl_nonzero!(NonZeroU8, u8);
define_NumPrimitive_impl_nonzero!(NonZeroU16, u16);
define_NumPrimitive_impl_nonzero!(NonZeroU32, u32);
define_NumPrimitive_impl_nonzero!(NonZeroU64, u64);
define_NumPrimitive_impl_nonzero!(NonZeroU128, u128);
define_NumPrimitive_impl_nonzero!(NonZeroUsize, usize);
define_NumPrimitive_impl_nonzero!(NonZeroIsize, isize);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn string_seed() {
        assert_eq!(
            "00000000-00000000-00000000-00000000",
            Seed::from(0).to_string()
        )
    }

    #[test]
    fn string_seed_parse() {
        use std::str::FromStr;
        assert_eq!(
            Seed::from_str("10000000-01020304-12412414-09080706").expect("parse correctly"),
            Seed::from(0x10000000_01020304_12412414_09080706)
        )
    }
}