1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! # Cholesky Decomposition
//!
//! every positive definite matrix \\(A \in R^{n \times n}\\) can be factored as
//!
//! \\[A = R^TR\\]
//!
//! where \\(R\\) is upper triangular matrix with positive diagonal elements
//!
//! Example:
//! ```
//! use smartcore::linalg::basic::matrix::DenseMatrix;
//! use smartcore::linalg::traits::cholesky::*;
//!
//! let A = DenseMatrix::from_2d_array(&[
//!                 &[25., 15., -5.],
//!                 &[15., 18., 0.],
//!                 &[-5., 0., 11.]
//!         ]);
//!
//! let cholesky = A.cholesky().unwrap();
//! let lower_triangular: DenseMatrix<f64> = cholesky.L();
//! let upper_triangular: DenseMatrix<f64> = cholesky.U();
//! ```
//!
//! ## References:
//! * ["No bullshit guide to linear algebra", Ivan Savov, 2016, 7.6 Matrix decompositions](https://minireference.com/)
//! * ["Numerical Recipes: The Art of Scientific Computing",  Press W.H., Teukolsky S.A., Vetterling W.T, Flannery B.P, 3rd ed., 2.9 Cholesky Decomposition](http://numerical.recipes/)
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
#![allow(non_snake_case)]

use std::fmt::Debug;
use std::marker::PhantomData;

use crate::error::{Failed, FailedError};
use crate::linalg::basic::arrays::Array2;
use crate::numbers::basenum::Number;
use crate::numbers::realnum::RealNumber;

#[derive(Debug, Clone)]
/// Results of Cholesky decomposition.
pub struct Cholesky<T: Number + RealNumber, M: Array2<T>> {
    R: M,
    t: PhantomData<T>,
}

impl<T: Number + RealNumber, M: Array2<T>> Cholesky<T, M> {
    pub(crate) fn new(R: M) -> Cholesky<T, M> {
        Cholesky { R, t: PhantomData }
    }

    /// Get lower triangular matrix.
    pub fn L(&self) -> M {
        let (n, _) = self.R.shape();
        let mut R = M::zeros(n, n);

        for i in 0..n {
            for j in 0..n {
                if j <= i {
                    R.set((i, j), *self.R.get((i, j)));
                }
            }
        }
        R
    }

    /// Get upper triangular matrix.
    pub fn U(&self) -> M {
        let (n, _) = self.R.shape();
        let mut R = M::zeros(n, n);

        for i in 0..n {
            for j in 0..n {
                if j <= i {
                    R.set((j, i), *self.R.get((i, j)));
                }
            }
        }
        R
    }

    /// Solves Ax = b
    pub(crate) fn solve(&self, mut b: M) -> Result<M, Failed> {
        let (bn, m) = b.shape();
        let (rn, _) = self.R.shape();

        if bn != rn {
            return Err(Failed::because(
                FailedError::SolutionFailed,
                "Can\'t solve Ax = b for x. FloatNumber of rows in b != number of rows in R.",
            ));
        }

        for k in 0..bn {
            for j in 0..m {
                for i in 0..k {
                    b.sub_element_mut((k, j), *b.get((i, j)) * *self.R.get((k, i)));
                }
                b.div_element_mut((k, j), *self.R.get((k, k)));
            }
        }

        for k in (0..bn).rev() {
            for j in 0..m {
                for i in k + 1..bn {
                    b.sub_element_mut((k, j), *b.get((i, j)) * *self.R.get((i, k)));
                }
                b.div_element_mut((k, j), *self.R.get((k, k)));
            }
        }
        Ok(b)
    }
}

/// Trait that implements Cholesky decomposition routine for any matrix.
pub trait CholeskyDecomposable<T: Number + RealNumber>: Array2<T> {
    /// Compute the Cholesky decomposition of a matrix.
    fn cholesky(&self) -> Result<Cholesky<T, Self>, Failed> {
        self.clone().cholesky_mut()
    }

    /// Compute the Cholesky decomposition of a matrix. The input matrix
    /// will be used for factorization.
    fn cholesky_mut(mut self) -> Result<Cholesky<T, Self>, Failed> {
        let (m, n) = self.shape();

        if m != n {
            return Err(Failed::because(
                FailedError::DecompositionFailed,
                "Can\'t do Cholesky decomposition on a non-square matrix",
            ));
        }

        for j in 0..n {
            let mut d = T::zero();
            for k in 0..j {
                let mut s = T::zero();
                for i in 0..k {
                    s += *self.get((k, i)) * *self.get((j, i));
                }
                s = (*self.get((j, k)) - s) / *self.get((k, k));
                self.set((j, k), s);
                d += s * s;
            }
            d = *self.get((j, j)) - d;

            if d < T::zero() {
                return Err(Failed::because(
                    FailedError::DecompositionFailed,
                    "The matrix is not positive definite.",
                ));
            }

            self.set((j, j), d.sqrt());
        }

        Ok(Cholesky::new(self))
    }

    /// Solves Ax = b
    fn cholesky_solve_mut(self, b: Self) -> Result<Self, Failed> {
        self.cholesky_mut().and_then(|qr| qr.solve(b))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::basic::matrix::DenseMatrix;
    use approx::relative_eq;
    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn cholesky_decompose() {
        let a = DenseMatrix::from_2d_array(&[&[25., 15., -5.], &[15., 18., 0.], &[-5., 0., 11.]]);
        let l =
            DenseMatrix::from_2d_array(&[&[5.0, 0.0, 0.0], &[3.0, 3.0, 0.0], &[-1.0, 1.0, 3.0]]);
        let u =
            DenseMatrix::from_2d_array(&[&[5.0, 3.0, -1.0], &[0.0, 3.0, 1.0], &[0.0, 0.0, 3.0]]);
        let cholesky = a.cholesky().unwrap();

        assert!(relative_eq!(cholesky.L().abs(), l.abs(), epsilon = 1e-4));
        assert!(relative_eq!(cholesky.U().abs(), u.abs(), epsilon = 1e-4));
        assert!(relative_eq!(
            cholesky.L().matmul(&cholesky.U()).abs(),
            a.abs(),
            epsilon = 1e-4
        ));
    }

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn cholesky_solve_mut() {
        let a = DenseMatrix::from_2d_array(&[&[25., 15., -5.], &[15., 18., 0.], &[-5., 0., 11.]]);
        let b = DenseMatrix::from_2d_array(&[&[40., 51., 28.]]);
        let expected = DenseMatrix::from_2d_array(&[&[1.0, 2.0, 3.0]]);

        let cholesky = a.cholesky().unwrap();

        assert!(relative_eq!(
            cholesky.solve(b.transpose()).unwrap().transpose(),
            expected,
            epsilon = 1e-4
        ));
    }
}