1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//! # Metric functions
//!
//! One way to build machine learning models is to use a constructive feedback loop through model evaluation.
//! In a feedback loop you build your model first, then you get feedback from metrics, improve it and repeat until your model achieve desirable performance.
//! Evaluation metrics helps to explain the performance of a model and compare models based on an objective criterion.
//!
//! Choosing the right metric is crucial while evaluating machine learning models. In `smartcore` you will find metrics for these classes of ML models:
//!
//! * [Classification metrics](struct.ClassificationMetrics.html)
//! * [Regression metrics](struct.RegressionMetrics.html)
//! * [Clustering metrics](struct.ClusterMetrics.html)
//!
//! Example:
//! ```
//! use smartcore::linalg::basic::matrix::DenseMatrix;
//! use smartcore::linear::logistic_regression::LogisticRegression;
//! use smartcore::metrics::*;
//!
//! let x = DenseMatrix::from_2d_array(&[
//!             &[5.1, 3.5, 1.4, 0.2],
//!             &[4.9, 3.0, 1.4, 0.2],
//!             &[4.7, 3.2, 1.3, 0.2],
//!             &[4.6, 3.1, 1.5, 0.2],
//!             &[5.0, 3.6, 1.4, 0.2],
//!             &[5.4, 3.9, 1.7, 0.4],
//!             &[4.6, 3.4, 1.4, 0.3],
//!             &[5.0, 3.4, 1.5, 0.2],
//!             &[4.4, 2.9, 1.4, 0.2],
//!             &[4.9, 3.1, 1.5, 0.1],
//!             &[7.0, 3.2, 4.7, 1.4],
//!             &[6.4, 3.2, 4.5, 1.5],
//!             &[6.9, 3.1, 4.9, 1.5],
//!             &[5.5, 2.3, 4.0, 1.3],
//!             &[6.5, 2.8, 4.6, 1.5],
//!             &[5.7, 2.8, 4.5, 1.3],
//!             &[6.3, 3.3, 4.7, 1.6],
//!             &[4.9, 2.4, 3.3, 1.0],
//!             &[6.6, 2.9, 4.6, 1.3],
//!             &[5.2, 2.7, 3.9, 1.4],
//!   ]);
//! let y: Vec<i8> = vec![
//!             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
//!   ];
//!
//! let lr = LogisticRegression::fit(&x, &y, Default::default()).unwrap();
//!
//! let y_hat = lr.predict(&x).unwrap();
//!
//! let acc = ClassificationMetricsOrd::accuracy().get_score(&y, &y_hat);
//! // or
//! let acc = accuracy(&y, &y_hat);
//! ```

/// Accuracy score.
pub mod accuracy;
// TODO: reimplement AUC
// /// Computes Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
pub mod auc;
/// Compute the homogeneity, completeness and V-Measure scores.
pub mod cluster_hcv;
pub(crate) mod cluster_helpers;
/// Multitude of distance metrics are defined here
pub mod distance;
/// F1 score, also known as balanced F-score or F-measure.
pub mod f1;
/// Mean absolute error regression loss.
pub mod mean_absolute_error;
/// Mean squared error regression loss.
pub mod mean_squared_error;
/// Computes the precision.
pub mod precision;
/// Coefficient of determination (R2).
pub mod r2;
/// Computes the recall.
pub mod recall;

use crate::linalg::basic::arrays::{Array1, ArrayView1};
use crate::numbers::basenum::Number;
use crate::numbers::floatnum::FloatNumber;
use crate::numbers::realnum::RealNumber;

use std::marker::PhantomData;

/// A trait to be implemented by all metrics
pub trait Metrics<T> {
    /// instantiate a new Metrics trait-object
    /// <https://doc.rust-lang.org/error-index.html#E0038>
    fn new() -> Self
    where
        Self: Sized;
    /// used to instantiate metric with a paramenter
    fn new_with(_parameter: f64) -> Self
    where
        Self: Sized;
    /// compute score realated to this metric
    fn get_score(&self, y_true: &dyn ArrayView1<T>, y_pred: &dyn ArrayView1<T>) -> f64;
}

/// Use these metrics to compare classification models.
pub struct ClassificationMetrics<T> {
    phantom: PhantomData<T>,
}

/// Use these metrics to compare classification models for
/// numbers that require `Ord`.
pub struct ClassificationMetricsOrd<T> {
    phantom: PhantomData<T>,
}

/// Metrics for regression models.
pub struct RegressionMetrics<T> {
    phantom: PhantomData<T>,
}

/// Cluster metrics.
pub struct ClusterMetrics<T> {
    phantom: PhantomData<T>,
}

impl<T: Number + RealNumber + FloatNumber> ClassificationMetrics<T> {
    /// Recall, see [recall](recall/index.html).
    pub fn recall() -> recall::Recall<T> {
        recall::Recall::new()
    }

    /// Precision, see [precision](precision/index.html).
    pub fn precision() -> precision::Precision<T> {
        precision::Precision::new()
    }

    /// F1 score, also known as balanced F-score or F-measure, see [F1](f1/index.html).
    pub fn f1(beta: f64) -> f1::F1<T> {
        f1::F1::new_with(beta)
    }

    /// Area Under the Receiver Operating Characteristic Curve (ROC AUC), see [AUC](auc/index.html).
    pub fn roc_auc_score() -> auc::AUC<T> {
        auc::AUC::<T>::new()
    }
}

impl<T: Number + Ord> ClassificationMetricsOrd<T> {
    /// Accuracy score, see [accuracy](accuracy/index.html).
    pub fn accuracy() -> accuracy::Accuracy<T> {
        accuracy::Accuracy::new()
    }
}

impl<T: Number + FloatNumber> RegressionMetrics<T> {
    /// Mean squared error, see [mean squared error](mean_squared_error/index.html).
    pub fn mean_squared_error() -> mean_squared_error::MeanSquareError<T> {
        mean_squared_error::MeanSquareError::new()
    }

    /// Mean absolute error, see [mean absolute error](mean_absolute_error/index.html).
    pub fn mean_absolute_error() -> mean_absolute_error::MeanAbsoluteError<T> {
        mean_absolute_error::MeanAbsoluteError::new()
    }

    /// Coefficient of determination (R2), see [R2](r2/index.html).
    pub fn r2() -> r2::R2<T> {
        r2::R2::<T>::new()
    }
}

impl<T: Number + Ord> ClusterMetrics<T> {
    /// Homogeneity and completeness and V-Measure scores at once.
    pub fn hcv_score() -> cluster_hcv::HCVScore<T> {
        cluster_hcv::HCVScore::<T>::new()
    }
}

/// Function that calculated accuracy score, see [accuracy](accuracy/index.html).
/// * `y_true` - cround truth (correct) labels
/// * `y_pred` - predicted labels, as returned by a classifier.
pub fn accuracy<T: Number + Ord, V: ArrayView1<T>>(y_true: &V, y_pred: &V) -> f64 {
    let obj = ClassificationMetricsOrd::<T>::accuracy();
    obj.get_score(y_true, y_pred)
}

/// Calculated recall score, see [recall](recall/index.html)
/// * `y_true` - cround truth (correct) labels.
/// * `y_pred` - predicted labels, as returned by a classifier.
pub fn recall<T: Number + RealNumber + FloatNumber, V: ArrayView1<T>>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    let obj = ClassificationMetrics::<T>::recall();
    obj.get_score(y_true, y_pred)
}

/// Calculated precision score, see [precision](precision/index.html).
/// * `y_true` - cround truth (correct) labels.
/// * `y_pred` - predicted labels, as returned by a classifier.
pub fn precision<T: Number + RealNumber + FloatNumber, V: ArrayView1<T>>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    let obj = ClassificationMetrics::<T>::precision();
    obj.get_score(y_true, y_pred)
}

/// Computes F1 score, see [F1](f1/index.html).
/// * `y_true` - cround truth (correct) labels.
/// * `y_pred` - predicted labels, as returned by a classifier.
pub fn f1<T: Number + RealNumber + FloatNumber, V: ArrayView1<T>>(
    y_true: &V,
    y_pred: &V,
    beta: f64,
) -> f64 {
    let obj = ClassificationMetrics::<T>::f1(beta);
    obj.get_score(y_true, y_pred)
}

/// AUC score, see [AUC](auc/index.html).
/// * `y_true` - cround truth (correct) labels.
/// * `y_pred_probabilities` - probability estimates, as returned by a classifier.
pub fn roc_auc_score<
    T: Number + RealNumber + FloatNumber + PartialOrd,
    V: ArrayView1<T> + Array1<T> + Array1<T>,
>(
    y_true: &V,
    y_pred_probabilities: &V,
) -> f64 {
    let obj = ClassificationMetrics::<T>::roc_auc_score();
    obj.get_score(y_true, y_pred_probabilities)
}

/// Computes mean squared error, see [mean squared error](mean_squared_error/index.html).
/// * `y_true` - Ground truth (correct) target values.
/// * `y_pred` - Estimated target values.
pub fn mean_squared_error<T: Number + FloatNumber, V: ArrayView1<T>>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    RegressionMetrics::<T>::mean_squared_error().get_score(y_true, y_pred)
}

/// Computes mean absolute error, see [mean absolute error](mean_absolute_error/index.html).
/// * `y_true` - Ground truth (correct) target values.
/// * `y_pred` - Estimated target values.
pub fn mean_absolute_error<T: Number + FloatNumber, V: ArrayView1<T>>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    RegressionMetrics::<T>::mean_absolute_error().get_score(y_true, y_pred)
}

/// Computes R2 score, see [R2](r2/index.html).
/// * `y_true` - Ground truth (correct) target values.
/// * `y_pred` - Estimated target values.
pub fn r2<T: Number + FloatNumber, V: ArrayView1<T>>(y_true: &V, y_pred: &V) -> f64 {
    RegressionMetrics::<T>::r2().get_score(y_true, y_pred)
}

/// Homogeneity metric of a cluster labeling given a ground truth (range is between 0.0 and 1.0).
/// A cluster result satisfies homogeneity if all of its clusters contain only data points which are members of a single class.
/// * `labels_true` - ground truth class labels to be used as a reference.
/// * `labels_pred` - cluster labels to evaluate.
pub fn homogeneity_score<
    T: Number + FloatNumber + RealNumber + Ord,
    V: ArrayView1<T> + Array1<T>,
>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    let mut obj = ClusterMetrics::<T>::hcv_score();
    obj.compute(y_true, y_pred);
    obj.homogeneity().unwrap()
}

///
/// Completeness metric of a cluster labeling given a ground truth (range is between 0.0 and 1.0).
/// * `labels_true` - ground truth class labels to be used as a reference.
/// * `labels_pred` - cluster labels to evaluate.
pub fn completeness_score<
    T: Number + FloatNumber + RealNumber + Ord,
    V: ArrayView1<T> + Array1<T>,
>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    let mut obj = ClusterMetrics::<T>::hcv_score();
    obj.compute(y_true, y_pred);
    obj.completeness().unwrap()
}

/// The harmonic mean between homogeneity and completeness.
/// * `labels_true` - ground truth class labels to be used as a reference.
/// * `labels_pred` - cluster labels to evaluate.
pub fn v_measure_score<T: Number + FloatNumber + RealNumber + Ord, V: ArrayView1<T> + Array1<T>>(
    y_true: &V,
    y_pred: &V,
) -> f64 {
    let mut obj = ClusterMetrics::<T>::hcv_score();
    obj.compute(y_true, y_pred);
    obj.v_measure().unwrap()
}