1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//! # Bernoulli Naive Bayes
//!
//! Bernoulli Naive Bayes classifier is a variant of [Naive Bayes](../index.html) for the data that is distributed according to multivariate Bernoulli distribution.
//! It is used for discrete data with binary features. One example of a binary feature is a word that occurs in the text or not.
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::naive::dense_matrix::*;
//! use smartcore::naive_bayes::bernoulli::BernoulliNB;
//!
//! // Training data points are:
//! // Chinese Beijing Chinese (class: China)
//! // Chinese Chinese Shanghai (class: China)
//! // Chinese Macao (class: China)
//! // Tokyo Japan Chinese (class: Japan)
//! let x = DenseMatrix::<f64>::from_2d_array(&[
//!           &[1., 1., 0., 0., 0., 0.],
//!           &[0., 1., 0., 0., 1., 0.],
//!           &[0., 1., 0., 1., 0., 0.],
//!           &[0., 1., 1., 0., 0., 1.],
//! ]);
//! let y = vec![0., 0., 0., 1.];
//!
//! let nb = BernoulliNB::fit(&x, &y, Default::default()).unwrap();
//!
//! // Testing data point is:
//! // Chinese Chinese Chinese Tokyo Japan
//! let x_test = DenseMatrix::<f64>::from_2d_array(&[&[0., 1., 1., 0., 0., 1.]]);
//! let y_hat = nb.predict(&x_test).unwrap();
//! ```
//!
//! ## References:
//!
//! * ["Introduction to Information Retrieval", Manning C. D., Raghavan P., Schutze H., 2009, Chapter 13 ](https://nlp.stanford.edu/IR-book/information-retrieval-book.html)
use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::row_iter;
use crate::linalg::BaseVector;
use crate::linalg::Matrix;
use crate::math::num::RealNumber;
use crate::math::vector::RealNumberVector;
use crate::naive_bayes::{BaseNaiveBayes, NBDistribution};

use serde::{Deserialize, Serialize};

/// Naive Bayes classifier for Bearnoulli features
#[derive(Serialize, Deserialize, Debug, PartialEq)]
struct BernoulliNBDistribution<T: RealNumber> {
    /// class labels known to the classifier
    class_labels: Vec<T>,
    class_priors: Vec<T>,
    feature_prob: Vec<Vec<T>>,
}

impl<T: RealNumber, M: Matrix<T>> NBDistribution<T, M> for BernoulliNBDistribution<T> {
    fn prior(&self, class_index: usize) -> T {
        self.class_priors[class_index]
    }

    fn log_likelihood(&self, class_index: usize, j: &M::RowVector) -> T {
        let mut likelihood = T::zero();
        for feature in 0..j.len() {
            let value = j.get(feature);
            if value == T::one() {
                likelihood += self.feature_prob[class_index][feature].ln();
            } else {
                likelihood += (T::one() - self.feature_prob[class_index][feature]).ln();
            }
        }
        likelihood
    }

    fn classes(&self) -> &Vec<T> {
        &self.class_labels
    }
}

/// `BernoulliNB` parameters. Use `Default::default()` for default values.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct BernoulliNBParameters<T: RealNumber> {
    /// Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).
    pub alpha: T,
    /// Prior probabilities of the classes. If specified the priors are not adjusted according to the data
    pub priors: Option<Vec<T>>,
    /// Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors.
    pub binarize: Option<T>,
}

impl<T: RealNumber> BernoulliNBParameters<T> {
    /// Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).
    pub fn with_alpha(mut self, alpha: T) -> Self {
        self.alpha = alpha;
        self
    }
    /// Prior probabilities of the classes. If specified the priors are not adjusted according to the data
    pub fn with_priors(mut self, priors: Vec<T>) -> Self {
        self.priors = Some(priors);
        self
    }
    /// Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors.
    pub fn with_binarize(mut self, binarize: T) -> Self {
        self.binarize = Some(binarize);
        self
    }
}

impl<T: RealNumber> Default for BernoulliNBParameters<T> {
    fn default() -> Self {
        Self {
            alpha: T::one(),
            priors: None,
            binarize: Some(T::zero()),
        }
    }
}

impl<T: RealNumber> BernoulliNBDistribution<T> {
    /// Fits the distribution to a NxM matrix where N is number of samples and M is number of features.
    /// * `x` - training data.
    /// * `y` - vector with target values (classes) of length N.
    /// * `priors` - Optional vector with prior probabilities of the classes. If not defined,
    /// priors are adjusted according to the data.
    /// * `alpha` - Additive (Laplace/Lidstone) smoothing parameter.
    /// * `binarize` - Threshold for binarizing.
    pub fn fit<M: Matrix<T>>(
        x: &M,
        y: &M::RowVector,
        alpha: T,
        priors: Option<Vec<T>>,
    ) -> Result<Self, Failed> {
        let (n_samples, n_features) = x.shape();
        let y_samples = y.len();
        if y_samples != n_samples {
            return Err(Failed::fit(&format!(
                "Size of x should equal size of y; |x|=[{}], |y|=[{}]",
                n_samples, y_samples
            )));
        }

        if n_samples == 0 {
            return Err(Failed::fit(&format!(
                "Size of x and y should greater than 0; |x|=[{}]",
                n_samples
            )));
        }
        if alpha < T::zero() {
            return Err(Failed::fit(&format!(
                "Alpha should be greater than 0; |alpha|=[{}]",
                alpha
            )));
        }

        let y = y.to_vec();

        let (class_labels, indices) = <Vec<T> as RealNumberVector<T>>::unique_with_indices(&y);
        let mut class_count = vec![T::zero(); class_labels.len()];

        for class_index in indices.iter() {
            class_count[*class_index] += T::one();
        }

        let class_priors = if let Some(class_priors) = priors {
            if class_priors.len() != class_labels.len() {
                return Err(Failed::fit(
                    "Size of priors provided does not match the number of classes of the data.",
                ));
            }
            class_priors
        } else {
            class_count
                .iter()
                .map(|&c| c / T::from(n_samples).unwrap())
                .collect()
        };

        let mut feature_in_class_counter = vec![vec![T::zero(); n_features]; class_labels.len()];

        for (row, class_index) in row_iter(x).zip(indices) {
            for (idx, row_i) in row.iter().enumerate().take(n_features) {
                feature_in_class_counter[class_index][idx] += *row_i;
            }
        }

        let feature_prob = feature_in_class_counter
            .iter()
            .enumerate()
            .map(|(class_index, feature_count)| {
                feature_count
                    .iter()
                    .map(|&count| (count + alpha) / (class_count[class_index] + alpha * T::two()))
                    .collect()
            })
            .collect();

        Ok(Self {
            class_labels,
            class_priors,
            feature_prob,
        })
    }
}

/// BernoulliNB implements the categorical naive Bayes algorithm for categorically distributed data.
#[derive(Serialize, Deserialize, Debug, PartialEq)]
pub struct BernoulliNB<T: RealNumber, M: Matrix<T>> {
    inner: BaseNaiveBayes<T, M, BernoulliNBDistribution<T>>,
    binarize: Option<T>,
}

impl<T: RealNumber, M: Matrix<T>> SupervisedEstimator<M, M::RowVector, BernoulliNBParameters<T>>
    for BernoulliNB<T, M>
{
    fn fit(x: &M, y: &M::RowVector, parameters: BernoulliNBParameters<T>) -> Result<Self, Failed> {
        BernoulliNB::fit(x, y, parameters)
    }
}

impl<T: RealNumber, M: Matrix<T>> Predictor<M, M::RowVector> for BernoulliNB<T, M> {
    fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        self.predict(x)
    }
}

impl<T: RealNumber, M: Matrix<T>> BernoulliNB<T, M> {
    /// Fits BernoulliNB with given data
    /// * `x` - training data of size NxM where N is the number of samples and M is the number of
    /// features.
    /// * `y` - vector with target values (classes) of length N.
    /// * `parameters` - additional parameters like class priors, alpha for smoothing and
    /// binarizing threshold.
    pub fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: BernoulliNBParameters<T>,
    ) -> Result<Self, Failed> {
        let distribution = if let Some(threshold) = parameters.binarize {
            BernoulliNBDistribution::fit(
                &(x.binarize(threshold)),
                y,
                parameters.alpha,
                parameters.priors,
            )?
        } else {
            BernoulliNBDistribution::fit(x, y, parameters.alpha, parameters.priors)?
        };

        let inner = BaseNaiveBayes::fit(distribution)?;
        Ok(Self {
            inner,
            binarize: parameters.binarize,
        })
    }

    /// Estimates the class labels for the provided data.
    /// * `x` - data of shape NxM where N is number of data points to estimate and M is number of features.
    /// Returns a vector of size N with class estimates.
    pub fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        if let Some(threshold) = self.binarize {
            self.inner.predict(&(x.binarize(threshold)))
        } else {
            self.inner.predict(x)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::naive::dense_matrix::DenseMatrix;

    #[test]
    fn run_bernoulli_naive_bayes() {
        // Tests that BernoulliNB when alpha=1.0 gives the same values as
        // those given for the toy example in Manning, Raghavan, and
        // Schuetze's "Introduction to Information Retrieval" book:
        // https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

        // Training data points are:
        // Chinese Beijing Chinese (class: China)
        // Chinese Chinese Shanghai (class: China)
        // Chinese Macao (class: China)
        // Tokyo Japan Chinese (class: Japan)
        let x = DenseMatrix::<f64>::from_2d_array(&[
            &[1., 1., 0., 0., 0., 0.],
            &[0., 1., 0., 0., 1., 0.],
            &[0., 1., 0., 1., 0., 0.],
            &[0., 1., 1., 0., 0., 1.],
        ]);
        let y = vec![0., 0., 0., 1.];
        let bnb = BernoulliNB::fit(&x, &y, Default::default()).unwrap();

        assert_eq!(bnb.inner.distribution.class_priors, &[0.75, 0.25]);
        assert_eq!(
            bnb.inner.distribution.feature_prob,
            &[
                &[0.4, 0.8, 0.2, 0.4, 0.4, 0.2],
                &[1. / 3.0, 2. / 3.0, 2. / 3.0, 1. / 3.0, 1. / 3.0, 2. / 3.0]
            ]
        );

        // Testing data point is:
        //  Chinese Chinese Chinese Tokyo Japan
        let x_test = DenseMatrix::<f64>::from_2d_array(&[&[0., 1., 1., 0., 0., 1.]]);
        let y_hat = bnb.predict(&x_test).unwrap();

        assert_eq!(y_hat, &[1.]);
    }

    #[test]
    fn bernoulli_nb_scikit_parity() {
        let x = DenseMatrix::<f64>::from_2d_array(&[
            &[2., 4., 0., 0., 2., 1., 2., 4., 2., 0.],
            &[3., 4., 0., 2., 1., 0., 1., 4., 0., 3.],
            &[1., 4., 2., 4., 1., 0., 1., 2., 3., 2.],
            &[0., 3., 3., 4., 1., 0., 3., 1., 1., 1.],
            &[0., 2., 1., 4., 3., 4., 1., 2., 3., 1.],
            &[3., 2., 4., 1., 3., 0., 2., 4., 0., 2.],
            &[3., 1., 3., 0., 2., 0., 4., 4., 3., 4.],
            &[2., 2., 2., 0., 1., 1., 2., 1., 0., 1.],
            &[3., 3., 2., 2., 0., 2., 3., 2., 2., 3.],
            &[4., 3., 4., 4., 4., 2., 2., 0., 1., 4.],
            &[3., 4., 2., 2., 1., 4., 4., 4., 1., 3.],
            &[3., 0., 1., 4., 4., 0., 0., 3., 2., 4.],
            &[2., 0., 3., 3., 1., 2., 0., 2., 4., 1.],
            &[2., 4., 0., 4., 2., 4., 1., 3., 1., 4.],
            &[0., 2., 2., 3., 4., 0., 4., 4., 4., 4.],
        ]);
        let y = vec![2., 2., 0., 0., 0., 2., 1., 1., 0., 1., 0., 0., 2., 0., 2.];
        let bnb = BernoulliNB::fit(&x, &y, Default::default()).unwrap();

        let y_hat = bnb.predict(&x).unwrap();

        assert!(bnb
            .inner
            .distribution
            .class_priors
            .approximate_eq(&vec!(0.46, 0.2, 0.33), 1e-2));
        assert!(bnb.inner.distribution.feature_prob[1].approximate_eq(
            &vec!(0.8, 0.8, 0.8, 0.4, 0.8, 0.6, 0.8, 0.6, 0.6, 0.8),
            1e-1
        ));
        assert!(y_hat.approximate_eq(
            &vec!(2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
            1e-5
        ));
    }

    #[test]
    fn serde() {
        let x = DenseMatrix::<f64>::from_2d_array(&[
            &[1., 1., 0., 0., 0., 0.],
            &[0., 1., 0., 0., 1., 0.],
            &[0., 1., 0., 1., 0., 0.],
            &[0., 1., 1., 0., 0., 1.],
        ]);
        let y = vec![0., 0., 0., 1.];

        let bnb = BernoulliNB::fit(&x, &y, Default::default()).unwrap();
        let deserialized_bnb: BernoulliNB<f64, DenseMatrix<f64>> =
            serde_json::from_str(&serde_json::to_string(&bnb).unwrap()).unwrap();

        assert_eq!(bnb, deserialized_bnb);
    }
}