1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//! # Linear Regression
//!
//! Linear regression is a very straightforward approach for predicting a quantitative response \\(y\\) on the basis of a linear combination of explanatory variables \\(X\\).
//! Linear regression assumes that there is approximately a linear relationship between \\(X\\) and \\(y\\). Formally, we can write this linear relationship as
//!
//! \\[y \approx \beta_0 + \sum_{i=1}^n \beta_iX_i + \epsilon\\]
//!
//! where \\(\epsilon\\) is a mean-zero random error term and the regression coefficients \\(\beta_0, \beta_0, ... \beta_n\\) are unknown, and must be estimated.
//!
//! While regression coefficients can be estimated directly by solving
//!
//! \\[\hat{\beta} = (X^TX)^{-1}X^Ty \\]
//!
//! the \\((X^TX)^{-1}\\) term is both computationally expensive and numerically unstable. An alternative approach is to use a matrix decomposition to avoid this operation.
//! SmartCore uses [SVD](../../linalg/svd/index.html) and [QR](../../linalg/qr/index.html) matrix decomposition to find estimates of \\(\hat{\beta}\\).
//! The QR decomposition is more computationally efficient and more numerically stable than calculating the normal equation directly,
//! but does not work for all data matrices. Unlike the QR decomposition, all matrices have an SVD decomposition.
//!
//! Example:
//!
//! ```
//! use smartcore::linalg::naive::dense_matrix::*;
//! use smartcore::linear::linear_regression::*;
//!
//! // Longley dataset (https://www.statsmodels.org/stable/datasets/generated/longley.html)
//! let x = DenseMatrix::from_2d_array(&[
//!               &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
//!               &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
//!               &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
//!               &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
//!               &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
//!               &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
//!               &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
//!               &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
//!               &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
//!               &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
//!               &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
//!               &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
//!               &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
//!               &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
//!               &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
//!               &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
//!          ]);
//!
//! let y: Vec<f64> = vec![83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0,
//!           100.0, 101.2, 104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9];
//!
//! let lr = LinearRegression::fit(&x, &y,
//!             LinearRegressionParameters::default().
//!             with_solver(LinearRegressionSolverName::QR)).unwrap();
//!
//! let y_hat = lr.predict(&x).unwrap();
//! ```
//!
//! ## References:
//!
//! * ["Pattern Recognition and Machine Learning", C.M. Bishop, Linear Models for Regression](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)
//! * ["An Introduction to Statistical Learning", James G., Witten D., Hastie T., Tibshirani R., 3. Linear Regression](http://faculty.marshall.usc.edu/gareth-james/ISL/)
//! * ["Numerical Recipes: The Art of Scientific Computing",  Press W.H., Teukolsky S.A., Vetterling W.T, Flannery B.P, 3rd ed., Section 15.4 General Linear Least Squares](http://numerical.recipes/)
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
use std::fmt::Debug;

use serde::{Deserialize, Serialize};

use crate::api::{Predictor, SupervisedEstimator};
use crate::error::Failed;
use crate::linalg::Matrix;
use crate::math::num::RealNumber;

#[derive(Serialize, Deserialize, Debug, Clone)]
/// Approach to use for estimation of regression coefficients. QR is more efficient but SVD is more stable.
pub enum LinearRegressionSolverName {
    /// QR decomposition, see [QR](../../linalg/qr/index.html)
    QR,
    /// SVD decomposition, see [SVD](../../linalg/svd/index.html)
    SVD,
}

/// Linear Regression parameters
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct LinearRegressionParameters {
    /// Solver to use for estimation of regression coefficients.
    pub solver: LinearRegressionSolverName,
}

/// Linear Regression
#[derive(Serialize, Deserialize, Debug)]
pub struct LinearRegression<T: RealNumber, M: Matrix<T>> {
    coefficients: M,
    intercept: T,
    solver: LinearRegressionSolverName,
}

impl LinearRegressionParameters {
    /// Solver to use for estimation of regression coefficients.
    pub fn with_solver(mut self, solver: LinearRegressionSolverName) -> Self {
        self.solver = solver;
        self
    }
}

impl Default for LinearRegressionParameters {
    fn default() -> Self {
        LinearRegressionParameters {
            solver: LinearRegressionSolverName::SVD,
        }
    }
}

impl<T: RealNumber, M: Matrix<T>> PartialEq for LinearRegression<T, M> {
    fn eq(&self, other: &Self) -> bool {
        self.coefficients == other.coefficients
            && (self.intercept - other.intercept).abs() <= T::epsilon()
    }
}

impl<T: RealNumber, M: Matrix<T>> SupervisedEstimator<M, M::RowVector, LinearRegressionParameters>
    for LinearRegression<T, M>
{
    fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: LinearRegressionParameters,
    ) -> Result<Self, Failed> {
        LinearRegression::fit(x, y, parameters)
    }
}

impl<T: RealNumber, M: Matrix<T>> Predictor<M, M::RowVector> for LinearRegression<T, M> {
    fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        self.predict(x)
    }
}

impl<T: RealNumber, M: Matrix<T>> LinearRegression<T, M> {
    /// Fits Linear Regression to your data.
    /// * `x` - _NxM_ matrix with _N_ observations and _M_ features in each observation.
    /// * `y` - target values
    /// * `parameters` - other parameters, use `Default::default()` to set parameters to default values.
    pub fn fit(
        x: &M,
        y: &M::RowVector,
        parameters: LinearRegressionParameters,
    ) -> Result<LinearRegression<T, M>, Failed> {
        let y_m = M::from_row_vector(y.clone());
        let b = y_m.transpose();
        let (x_nrows, num_attributes) = x.shape();
        let (y_nrows, _) = b.shape();

        if x_nrows != y_nrows {
            return Err(Failed::fit(
                &"Number of rows of X doesn\'t match number of rows of Y".to_string(),
            ));
        }

        let a = x.h_stack(&M::ones(x_nrows, 1));

        let w = match parameters.solver {
            LinearRegressionSolverName::QR => a.qr_solve_mut(b)?,
            LinearRegressionSolverName::SVD => a.svd_solve_mut(b)?,
        };

        let wights = w.slice(0..num_attributes, 0..1);

        Ok(LinearRegression {
            intercept: w.get(num_attributes, 0),
            coefficients: wights,
            solver: parameters.solver,
        })
    }

    /// Predict target values from `x`
    /// * `x` - _KxM_ data where _K_ is number of observations and _M_ is number of features.
    pub fn predict(&self, x: &M) -> Result<M::RowVector, Failed> {
        let (nrows, _) = x.shape();
        let mut y_hat = x.matmul(&self.coefficients);
        y_hat.add_mut(&M::fill(nrows, 1, self.intercept));
        Ok(y_hat.transpose().to_row_vector())
    }

    /// Get estimates regression coefficients
    pub fn coefficients(&self) -> &M {
        &self.coefficients
    }

    /// Get estimate of intercept
    pub fn intercept(&self) -> T {
        self.intercept
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::linalg::naive::dense_matrix::*;

    #[test]
    fn ols_fit_predict() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
            &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);

        let y: Vec<f64> = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let y_hat_qr = LinearRegression::fit(
            &x,
            &y,
            LinearRegressionParameters {
                solver: LinearRegressionSolverName::QR,
            },
        )
        .and_then(|lr| lr.predict(&x))
        .unwrap();

        let y_hat_svd = LinearRegression::fit(&x, &y, Default::default())
            .and_then(|lr| lr.predict(&x))
            .unwrap();

        assert!(y
            .iter()
            .zip(y_hat_qr.iter())
            .all(|(&a, &b)| (a - b).abs() <= 5.0));
        assert!(y
            .iter()
            .zip(y_hat_svd.iter())
            .all(|(&a, &b)| (a - b).abs() <= 5.0));
    }

    #[test]
    fn serde() {
        let x = DenseMatrix::from_2d_array(&[
            &[234.289, 235.6, 159.0, 107.608, 1947., 60.323],
            &[259.426, 232.5, 145.6, 108.632, 1948., 61.122],
            &[258.054, 368.2, 161.6, 109.773, 1949., 60.171],
            &[284.599, 335.1, 165.0, 110.929, 1950., 61.187],
            &[328.975, 209.9, 309.9, 112.075, 1951., 63.221],
            &[346.999, 193.2, 359.4, 113.270, 1952., 63.639],
            &[365.385, 187.0, 354.7, 115.094, 1953., 64.989],
            &[363.112, 357.8, 335.0, 116.219, 1954., 63.761],
            &[397.469, 290.4, 304.8, 117.388, 1955., 66.019],
            &[419.180, 282.2, 285.7, 118.734, 1956., 67.857],
            &[442.769, 293.6, 279.8, 120.445, 1957., 68.169],
            &[444.546, 468.1, 263.7, 121.950, 1958., 66.513],
            &[482.704, 381.3, 255.2, 123.366, 1959., 68.655],
            &[502.601, 393.1, 251.4, 125.368, 1960., 69.564],
            &[518.173, 480.6, 257.2, 127.852, 1961., 69.331],
            &[554.894, 400.7, 282.7, 130.081, 1962., 70.551],
        ]);

        let y = vec![
            83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6,
            114.2, 115.7, 116.9,
        ];

        let lr = LinearRegression::fit(&x, &y, Default::default()).unwrap();

        let deserialized_lr: LinearRegression<f64, DenseMatrix<f64>> =
            serde_json::from_str(&serde_json::to_string(&lr).unwrap()).unwrap();

        assert_eq!(lr, deserialized_lr);
    }
}