1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
//! # Smart accessors
//!
//! Let's begin with a few words on naming.
//!
//! What is commonly named “smart __pointer__” is usually associated 
//! with trivial access (dereference) semantics and nontrivial clone/drop semantics.
//!
//! Smart __accessors__ provided by this crate also serve the purpose of 
//! accessing some data, but in a different way: they have trivial drop semantics 
//! and nontrivial access semantics.
//!
//! ## TLDR
//!
//! If you do not want to read a long text, just proceed to the 
//! [essential part](#cargo-features) of the documentation.
//!
//! Also there is the [version migration guide](#version-migration-guide).
//!
//!
//! ## High level overview
//!
//! The goal of this crate is threefold:
//!
//! * to offer one possible solution to the
//! [problem](https://rust-lang.github.io/rfcs/2094-nll.html#problem-case-3-conditional-control-flow-across-functions) that 
//!   the current (rustc 1.44) borrowchecker doesn't understand
//!   functions with multiple exit points 
//!   ([Polonius](https://github.com/rust-lang/polonius)
//!   doesn't have this problem but it is not stable yet)
//! * to provide a way to do bidirectional programming (when updating 
//!   some view of data updates the data viewed to match the updated view)
//! * last but not least, to reduce amount of callback hell 
//!   while programming in continuation-passing-style
//!
//! If you are aqcuainted with optics in functional languages you can 
//! think of this crate as a minimalistic “lens” (more precisely, 
//! affine traversal) library using an opionated imperative approach.
//!
//! ### Note
//!
//! As a side-effect of the library design one can use a “build” 
//! pattern with standard `&mut` references (see below).
//!
//!
//! ## Usage examples
//!
//! This crate already implements [accessors](stdlib_impls/) for stdlib collections:
//!
//! ```
//! use smart_access::Cps;
//!
//! let mut foo = vec![vec![1,2,3], vec![4,5,6]];
//!
//! let bar = foo.at(0).at(1).replace(7);
//! assert!(foo == vec![vec![1,7,3], vec![4,5,6]]);
//! assert!(bar == Some(2));
//!
//! let baz = foo.at(2).at(1).replace(8);
//! assert!(foo == vec![vec![1,7,3], vec![4,5,6]]);
//! assert!(baz == None);  // None is returned if path doesn't make sense
//!
//! // Any mutable reference can be used as a "data location":
//! assert!(foo[0][0].replace(9) == Some(1));
//! assert!(foo == vec![vec![9,7,3], vec![4,5,6]]);
//! ```
//!
//! A somewhat more interesting example:
//!
//! ```
//! # use smart_access::Cps;
//! let mut foo = vec![1,2,3,4,5,6];
//!
//! let bar = foo.at(1..=3).replace(vec![7,8]);
//! assert!(foo == vec![1,7,8,5,6]);
//! assert!(bar == Some(vec![2,3,4]));
//! ```
//!
//! An arbitrary mutating operation can be used instead of replacement:
//!
//! ```
//! # use smart_access::Cps;
//! let mut foo = vec![1,2,3,4,5,6];
//!
//! let bar = foo.at(1..4).access(|v| { *v = vec![v.iter().sum()]; "baz" });
//! assert!(foo == vec![1,9,5,6]);
//! assert!(bar == Some("baz"));
//!
//! // And with mutable references you get a sort of the "build" part of the Builder pattern
//! foo[0].access(|x| { /* do something with the element */ });
//! ```
//!
//!
//! ## Usage guide
//!
//! To add a smart accessor to your own datatype `Data` you need to:
//!
//! * choose some type `Index`
//! * add trait [`At<Index>`](trait.At.html) to the type `Data`
//! * implement [`access_at`](trait.At.html#tymethod.access_at) method
//! * at the usage site write `use smart_access::Cps;`
//! * PROFIT!
//!
//!
//! ## Motivation (part I: lifetimes)
//!
//! Suppose you have `HashMap` but without &#8220;Entry API&#8221; 
//! (Entry API is an implementation feature: not every datastructure 
//! in the wild provides any analogue). 
//!
//! Suppose also that you want to implement something akin to
//! `|m, k, v| m.entry(k).or_insert(v)`.
//!
//! You could write
//!
//! ``` compile_fail
//! # use std::collections::HashMap;
//! // for simplicity we use usize keys in the examples below
//! fn or_insert<V>(hm: &mut HashMap<usize,V>, k: usize, v: V) -> &mut V {
//!     if let Some(v) = hm.get_mut(&k) { 
//!         return v; 
//!         // this is the first exit point but the borrow checker
//!         // doesn't distinguish between it and the second exit point
//!     }     
//!
//!     hm.insert(k, v);  // Oops: hm is already borrowed! 
//!                       // (It _MUST_ be borrowed until the exit point)
//!
//!     hm.get_mut(&k).unwrap()
//!     // the second exit point
//! }
//! ```
//!
//! but it would not compile because of limitations of the borrow checker.
//!
//! It seems there is no way to write such a function without
//! additional queries to the `HashMap` and without
//! resorting to reference-pointer-reference conversions or
//! other `unsafe` techniques.
//!
//! This crate provides a not-so-clumsy workaround:
//!
//! ```
//! use std::collections::HashMap;
//! use smart_access::{At, Cps};
//!
//! struct Ensure<K,V> { key: K, value: V }
//!
//! impl<V> At<Ensure<usize, V>> for HashMap<usize, V> 
//! {
//!     type View = V;
//!
//!     fn access_at<R, F>(&mut self, kv: Ensure<usize, V>, f: F) -> Option<R> where
//!         F: FnOnce(&mut V) -> R
//!     {
//!         if let Some(v) = self.get_mut(&kv.key) { 
//!             return Some(f(v)); 
//!             // We use the so called CPS-transformation: we wrap each 
//!             // return site with a call to the provided function.
//!         } 
//!
//!         self.insert(kv.key, kv.value);
//!         Some(f(self.get_mut(&kv.key).unwrap()))
//!     }
//! }
//!
//! // now you can write or_insert (note the return type!):
//! fn or_insert<'a, V>(hm: &'a mut HashMap<usize,V>, k: usize, v: V) -> impl Cps<View=V> + 'a {
//!     hm.at(Ensure{ key: k, value: v })
//! }
//! ```
//!
//! There are some peculiarities though:
//!
//! * `&mut V` is _eager_: all code which is needed to obtain a reference 
//!   to the value is executed at the site of access
//! * `impl Cps<View=V>` is _lazy_: access is a zero-cost operation and all 
//!   the machinery needed to reach the value is run at the site of modification
//! * `&'a mut V` can be reborrowed, i.e. cloned for some subperiod of `'a`, 
//!   making it possible to modify the value referenced more than once
//! * `impl Cps<View=V>` can be used only once but has [batching](struct.CpsBatch.html). 
//!   It comes in two flavors: _compile-time batching_ 
//!   which can't be used across any control flow and _runtime batching_ which 
//!   can't be used in `no_std` contexts
//!
//! ### Note
//!
//! The forementioned accessor `Ensure { key: K, value: V }` is defined 
//! in [`stdlib_impls`](stdlib_impls/) simply as a pair `(K,V)` so 
//! for example you can write
//!
//! ```
//! # use smart_access::Cps;
//! # let mut map = hashbrown::HashMap::<String,String>::new();
//! map.at( ("foo".to_string(), "bar".to_string()) ).touch();
//! ```
//!
//! instead of
//!
//! ```
//! # let mut map = hashbrown::HashMap::<String,String>::new();
//! map.entry("foo".to_string()).or_insert("bar".to_string());
//! ```
//!
//!
//! ## Motivation (part II: bidirectional programming)
//!
//! We give a simple illustration: a toy example of a bidirectional vector parser.
//!
//! Not only can it parse a vector but also can print it back (note 
//! that two bidirectional parsers can be combined into a bidirectional 
//! translator from one textual representation to another).
//!
//! A combinator library greatly facilitating writing such parsers 
//! can be implemented but it is not a (current-time) goal of this crate.
//!
//! ### Note
//!
//! Some function definitions in the following code are hidden. To see them look 
//! at the full [module source](../src/smart_access/lib.rs.html).
//!
//! ```
//! // A little showcase:
//! assert!(vector_parser().bi_left((Some(vec![1,2,3]),"".into())) == "[1,2,3]".to_string());
//! assert!(vector_parser().bi_right(&mut "[1,2,3] foo".into()).0  == Some(vec![1,2,3]));
//! assert!(vector_parser().bi_right(&mut "[1,2,3,]bar".into()).0  == Some(vec![1,2,3]));
//! assert!(vector_parser().bi_right(&mut "[,]".into()).0          == None);
//! assert!(vector_parser().bi_right(&mut "[]".into()).0           == Some(vec![]));
//! assert!(vector_parser().bi_right(&mut "]1,2,3[".into()).0      == None);
//!
//! // The code:
//! use smart_access::{At, Cps};
//!
//! // a minimal set of parser combinators
//! #[derive(Clone)] struct _Number;
//! #[derive(Clone)] struct _Char(char);
//! #[derive(Clone)] struct _Many<T>(T);
//! #[derive(Clone)] struct _Optional<T>(T);
//! #[derive(Clone)] struct _Cons<Car,Cdr>(Car,Cdr);
//! #[derive(Clone)] struct _Iso<Parser,F,G>(Parser,F,G);
//!
//! fn vector_parser() -> impl Bidirectional<String, Parse<Vec<usize>>> {
//!     let grammar = 
//!         _Cons(_Char('['), 
//!         _Cons(_Many(_Cons(_Number, _Char(','))),
//!         _Cons(_Optional(_Number),
//!               _Char(']'))));
//!     
//!     let from_grammar = |(_bl, (xs, (ox, _br))): (_, (Vec<_>, (Option<_>, _)))| 
//!     {
//!         xs.into_iter().map(|(x, _comma)| x).chain(ox.into_iter()).collect()
//!     };
//!
//!     let to_grammar = |mut vec: Vec<_>| {
//!         let last = vec.pop();
//!
//!         ('[', (vec.into_iter().map(|x| (x, ',')).collect(), (last, ']')))
//!     };
//!
//!     _Iso(grammar, from_grammar, to_grammar)
//! }
//!
//! trait Bidirectional<A,B> {
//!     fn bi_left(self, b: B) -> A;
//!     fn bi_right(self, a: &mut A) -> B;
//! }
//!
//! // DO NOT USE IN PRODUCTION: efficient parsing is incompatible 
//! // with using copies of tails of the parsed string
//! type Parse<T> = (Option<T>, String);
//!
//! // a very simplistic blanket implementation
//! impl<A,B,I> Bidirectional<A,B> for I where
//!     A: At<I, View=B> + Default,
//!     B: Clone
//! {
//!     fn bi_left(self, b: B) -> A {
//!         let mut a = A::default();
//!
//!         a.at(self).access(|x| { *x = b; });
//!
//!         a
//!     }
//!
//!     fn bi_right(self, a: &mut A) -> B {
//!         a.at(self).access(|b| b.clone()).unwrap()
//!     }
//! }
//! 
//! impl At<_Number> for String {
//!     type View = Parse<usize>;
//!
//! #     fn access_at<R,F>(&mut self, _: _Number, f: F) -> Option<R> where
//! #         F: FnOnce(&mut Parse<usize>) -> R
//! #     {
//! #         let mut digits = String::new();
//! #
//! #         let mut it = self.chars();
//! #         let mut maybe_c = None;
//! #         for c in &mut it {
//! #             if c >= '0' && c <= '9' { digits.push(c); } 
//! #             else { maybe_c = Some(c); break; }
//! #         }
//! #
//! #         let rest = maybe_c.into_iter().chain(it).collect::<String>();
//! #         let mut arg = match digits.parse() {
//! #             Err(_) => (None, self.clone()),
//! #             Ok(number) => (Some(number), rest),
//! #         };
//! #
//! #         let result = f(&mut arg);
//! #         
//! #         let (maybe_number, rest) = arg;
//! #         match maybe_number {
//! #             Some(number) => { *self = number.to_string() + &rest; }
//! #             None         => { *self = rest; }
//! #         }
//! #
//! #         Some(result)
//! #     }
//!     // access_at is hidden
//! }
//!
//! impl At<_Char> for String {
//!     type View = Parse<char>;
//!
//! #     fn access_at<R,F>(&mut self, i: _Char, f: F) -> Option<R> where
//! #         F: FnOnce(&mut Parse<char>) -> R
//! #     {
//! #         let mut it = self.chars();
//! #         
//! #         let mut arg = match it.next() {
//! #             None => { (None, self.clone()) }
//! #             Some(c) => {
//! #                 if c != i.0 { (None, self.clone()) }
//! #                 else { (Some(c), it.collect::<String>()) }
//! #             }
//! #         };
//! #
//! #         let result = f(&mut arg);
//! #        
//! #         let (maybe_c, rest) = arg;
//! #         match maybe_c {
//! #             Some(c) => { *self = c.to_string() + &rest; }
//! #             None    => { *self = rest; }
//! #         }
//! #         
//! #         Some(result)
//! #     }
//!     // access_at is hidden
//! }
//! 
//! impl<V, Parser> At<_Many<Parser>> for String where
//!     String: At<Parser, View=Parse<V>>,
//!     Parser: Bidirectional<String, Parse<V>> + Clone,
//! {
//!     type View = Parse<Vec<V>>;
//!
//! #     fn access_at<R,F>(&mut self, i: _Many<Parser>, f: F) -> Option<R> where
//! #         F: FnOnce(&mut Self::View) -> R
//! #     {
//! #         let parser = &i.0;
//! #
//! #         let mut vec = Vec::<V>::new();
//! #         let mut current_string = self.clone();
//! #
//! #         loop {
//! #             match parser.clone().bi_right(&mut current_string) {
//! #                 (Some(v),s) => {
//! #                     vec.push(v);
//! #                     current_string = s;
//! #                 }
//! #
//! #                 (None,_) => { break; }
//! #             }
//! #         }
//! #
//! #         let mut arg = (Some(vec), current_string);
//! #         let result = f(&mut arg);
//! #         
//! #         let (maybe_vec, rest) = arg;
//! #         match maybe_vec {
//! #             None => { *self = rest; }
//! #             Some(vec) => {
//! #                 *self = vec.into_iter()
//! #                     .map(|x| parser.clone().bi_left((Some(x),"".into())))
//! #                     .collect::<String>() + &rest;
//! #             }
//! #         }
//! #
//! #         Some(result)
//! #     }
//!     // access_at is hidden
//! }
//!
//! impl<V, Parser> At<_Optional<Parser>> for String where
//!     String: At<Parser, View=Parse<V>>,
//!     Parser: Bidirectional<String, Parse<V>> + Clone,
//! {
//!     type View = Parse<Option<V>>;
//!
//! #     fn access_at<R,F>(&mut self, i: _Optional<Parser>, f: F) -> Option<R> where
//! #         F: FnOnce(&mut Self::View) -> R
//! #     {
//! #         let parser = i.0;
//! #
//! #         let mut arg = match parser.clone().bi_right(self) {
//! #             (maybe_value, s) => (Some(maybe_value), s),
//! #         };
//! #
//! #         let result = f(&mut arg);
//! #         
//! #         let (maybe_value, rest) = arg;
//! #         match maybe_value {
//! #             None => { *self = rest; }
//! #             Some(maybe_value) => {
//! #                 *self = parser.bi_left((maybe_value,"".into())) + &rest;
//! #             }
//! #         }
//! #
//! #         Some(result)
//! #     }
//!     // access_at is hidden
//! }
//!
//! impl<V1, V2, P1, P2> At<_Cons<P1, P2>> for String where
//!     String: At<P1, View=Parse<V1>>,
//!     String: At<P2, View=Parse<V2>>,
//!     P1: Bidirectional<String, Parse<V1>> + Clone,
//!     P2: Bidirectional<String, Parse<V2>> + Clone,
//! {
//!     type View = Parse<(V1,V2)>;
//!
//! #     fn access_at<R,F>(&mut self, i: _Cons<P1, P2>, f: F) -> Option<R> where 
//! #         F: FnOnce(&mut Self::View) -> R
//! #     {
//! #         let _Cons(p1, p2) = i;
//! #
//! #         let (maybe_v1, mut s1) = p1.clone().bi_right(self);
//! #         let (maybe_v2, s2)     = p2.clone().bi_right(&mut s1);
//! #
//! #         let mut arg = match (maybe_v1, maybe_v2) {
//! #             (Some(v1), Some(v2)) => (Some( (v1, v2) ), s2),
//! #             _ => (None, self.clone())
//! #         };
//! #
//! #         let result = f(&mut arg);
//! #
//! #         let (maybe_values, rest) = arg;
//! #         match maybe_values {
//! #             None => { *self = rest; }
//! #             Some( (v1, v2) ) => {
//! #                 *self = vec![
//! #                     p1.bi_left((Some(v1), "".into())),
//! #                     p2.bi_left((Some(v2), "".into())),
//! #                     rest
//! #                 ].into_iter().collect();
//! #             }
//! #         }
//! #
//! #         Some(result)
//! #     }
//!     // access_at is hidden
//! }
//!
//! impl<Parser, FromParser, ToParser, T, V> 
//! At<_Iso<Parser, FromParser, ToParser>> for String where
//!     String: At<Parser, View=Parse<T>>,
//!     Parser: Bidirectional<String, Parse<T>> + Clone,
//!     T: Clone,
//!     FromParser: FnOnce(T) -> V,
//!     ToParser: FnOnce(V) -> T,
//! {
//!     type View = Parse<V>;
//!
//! #     fn access_at<R,F>(&mut self, i: _Iso<Parser, FromParser, ToParser>, f: F) 
//! #         -> Option<R> where 
//! #         F: FnOnce(&mut Self::View) -> R
//! #     {
//! #         let _Iso(parser, from_parser, to_parser) = i;
//! #
//! #         let (maybe_t, rest) = parser.clone().bi_right(self);
//! #
//! #         let mut arg = (maybe_t.map(|t| from_parser(t)), rest); 
//! #         let result = f(&mut arg);
//! #
//! #         let (maybe_v, rest) = arg;
//! #         match maybe_v {
//! #             None => { *self = rest; }
//! #             Some(v) => {
//! #                 *self = parser.bi_left((Some(to_parser(v)),"".to_string())) + &rest;
//! #             }
//! #         }
//! #
//! #        Some(result)
//! #     }
//!     // access_at is hidden
//! }
//! ```
//!
//!
//! ## Connection to functional programming
//!
//! Rust type `fn(&mut V)` roughly corresponds to Haskell type `v -> v`.
//!
//! Thus Rust [`access_at`](trait.At.html#tymethod.access_at) type 
//! could be written in Haskell (after some argument-swapping) as
//!
//! ``` haskell
//! accessAt :: ix -> (v -> (v,r)) -> t -> (t, Maybe r)
//! ```
//!
//! Suppose that `access_at` always returns `Some(..)`. In such a case 
//! the Haskell type of `access_at` can be simplified to
//!
//! ``` haskell
//! accessAt :: ix -> (v -> (v,r)) -> t -> (t,r)
//! ```
//!
//! Its type is isomorphic to any of the following
//!
//! ``` haskell
//! ix -> t -> (v -> (v,r))     -> (t,r)  -- by arg-swapping
//! ix -> t -> (v->v, v->r)     -> (t,r)  -- by universal property of products
//! ix -> t -> (v->v) -> (v->r) -> (t,r)  -- by currying
//! ```
//!
//! Recall that a lens is uniquely defined by a getter and a setter:
//!
//! ``` haskell
//! type Lens t v = (t -> v, t -> v -> t)
//! ```
//!
//! This type is isomorphic to
//!
//! ``` haskell
//! type Lens t v = t -> (v, v -> t)
//! ```
//!
//! Notice that the types `(v, v->t)` and `forall r. (v->v) -> (v->r) -> (t,r)`
//! are rather similiar. Define
//!
//! ``` haskell
//! right :: (v, v->t) -> (v->v) -> (v->r) -> (t,r)
//! right (v, v_t) v_v v_r = (v_t (v_v v), v_r v)
//!
//! left :: (forall r. (v->v) -> (v->r) -> (t,r)) -> (v, v->t)
//! left f = (snd (f     id        id    ),  -- getter
//!     \v -> fst (f (\_ -> v) (\_ -> ())))  -- setter
//! ```
//!
//! Now we prove `(left . right) ~ id`:
//!
//! ``` haskell
//! left (right (v, v_t)) = (v, \x -> v_t x) ~ (v, v_t)
//! ```
//!
//! I.e. `right` is an injection: every value `lens :: Lens t v` can be 
//! presented as `left (accessAt ix)`: it suffices to define
//!
//! ``` haskell
//! accessAt ix = right lens  -- modulo aforementioned type-fu
//! ```
//!
//! In fact the full type (with `Maybe`)
//!
//! ``` haskell
//! accessAt ix :: (v -> (v,r)) -> t -> (t, Maybe r)
//! ```
//!
//! can house any lens, prism or affine traversal.
//!
//! ## Version migration guide
//!
//! ### From 0.6 to 0.7
//!
//! #### Difference #1
//!
//! Now the crate is fully independent of `std`. There is one thing however:
//! `HashMap` and `HashSet` are not yet in the `alloc::collections`.
//!
//! There are two options:
//!
//! * use the optional `hashbrown` dependency
//! * link to `std` by enabling the `std_hashmap` feature
//!
//!
//! #### Difference #2
//!
//! The first iteration of a general traversal (not affine, i.e. supporting 
//! more than one location) API is available. Obviously, it's fully 
//! backward-compatible.
//!
//!
//! ### From 0.5 to 0.6
//!
//! #### Difference #1
//!
//! The `std_collections` feature is now named `collections`.
//!
//! The `std` feature is deprecated. In the next version it will very likely be 
//! replaced by the `alloc` feature, responsible for linking to the `alloc` crate.
//!
//! #### Difference #2
//!
//! There is a new feature [`iter_mut`](./iter_mut/). 
//! It depends on the external crate 
//! [`multiref`](https://crates.io/crates/multiref/). That crate 
//! doesn't use any complex type-level programming, thus making 
//! the increase in the compilation time insignificant.
//!
//! But if you do not tolerate any dependencies or unsafe code, 
//! you can opt it out, losing some expressiveness.
//!
//!
//! ### From 0.4 to 0.5
//!
//! #### Difference #1
//!
//! The [`AT`](struct.AT.html) type changed its representation. 
//!
//! Now it has simpler and more flat structure:
//!
//! `AT<CPS, (..(((), I1), I2) .. In)>`
//!
//! instead of
//!
//! `AT<..AT<AT<CPS, I1>, I2> .. In>`
//!
//! Unfortunately, the new structure doesn't play well with type inference 
//! but this issue has been circumvented by separating the `Cps` implementation 
//! into a helper trait (this trait isn't exposed to the public API).
//!
//! Because the `AT` type isn't to be used explicitly, usually there is 
//! no need to change any code.
//!
//! Nevertheless there may exist some code which has compiled on 0.4 and does not 
//! compile on 0.5.
//!
//! #### Difference #2
//!
//! Relevant only to the `detach` feature.
//!
//! Now the [`detach`](struct.At.html#method.detach) method returns not 
//! only the detached part but also the left part (an accessor with 
//! the rest of the path attached).
//!
//! A new method [`cut`](trait.Cps.html#method.cut) is provided.
//! It allows one to mark the place from which the detach starts.
//!
//! #### Difference #3
//!
//! Also about `detach`.
//!
//! The [`Attach`](trait.Attach.html) trait changed its parameter to `View` 
//! instead of `CPS`.
//!
//! Usually it's sufficient to change `CPS` to `CPS::View` in generic code.
//!
//! Interestingly, there are some cases when
//!
//! ```
//! # use smart_access::*; #[cfg(feature="detach")]
//! fn foo<CPS: Cps, Path: Attach<CPS::View>> // ...
//! # (){}
//! ```
//!
//! is not equivalent to
//!
//! ```
//! # use smart_access::*; #[cfg(feature="detach")]
//! fn foo<CPS: Cps<View=V>, Path: Attach<V>, V: ?Sized> // ...
//! # (){}
//! ```
//!
//! For example, `impl Attach<V>` works after being returned from a function 
//! but `impl Attach<CPS::View>` doesn't (it seems to be connected with 
//! the fact that Rust currenlty doesn't &#8220;elaborate&#8221; (i.e. reduce) 
//! bounds on the associated types).
//!
//! ## Cargo features
//!
//! Currently there are following features:
//!
//! * `alloc`: Links to `alloc`.
//! * `collections`: Provides [accessors for some collections](./collections/). 
//!   __Implies `alloc`.__
//! * `hashbrown`: Accessors for `HashMap` and `HashSet` from the 
//!   [`hashbrown`](https://crates.io/crates/hashbrown) crate.
//!   __Pulls the `hashbrown` crate, implies `alloc`.__
//! * `std_hashmap`: Accessors for `HashMap` and `HashSet` from `std`. __Warning: links to `std`.__
//! * `batch_rt`: Provides runtime [batching](struct.CpsBatch.html). 
//!   __Implies `alloc`.__
//! * `batch_ct`: Provides compile-time [batching](struct.CpsBatch.html).
//! * `batch`: An alias for `batch_rt` and `batch_ct` enabled simultaneously.
//! * `detach`: Makes [`AT`](struct.AT.html)-paths [detachable](struct.AT.html#method.detach).
//! * `iter_mut`: [Accessors for iterators](./iter_mut/). 
//!   __Pulls the [`multiref`](https://crates.io/crates/multiref) crate, implies `alloc`.__
//! * `traversal`: Bidirectional iterators in continuation passing style.
//!
//! All features except `std_hashmap` are enabled by default.

#![no_std]

#[cfg(feature="alloc")]
extern crate alloc;

mod at;
pub mod core_impls;

#[cfg(feature="collections")]
pub mod collections;

pub use at::{At, AT, Cps};

#[cfg(any(feature="batch_rt", feature="batch_ct"))]
mod batch;

#[cfg(any(feature="batch_rt", feature="batch_ct"))]
pub use batch::{ CpsBatch, Batch };

#[cfg(feature="batch_ct")]
pub use batch::{ BatchCt };

#[cfg(feature="batch_rt")]
pub use batch::{ BatchRt };

#[cfg(feature="detach")]
pub use at::{ Attach, detached_at, DetachedPath };

#[cfg(feature="iter_mut")]
pub mod iter_mut;

#[cfg(feature="traversal")]
pub use at::traversal;

mod macros;