1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
#![cfg_attr(feature = "unstable", feature(test))]

pub mod fragment_clusterer;
pub mod translation;

extern crate bio;
#[macro_use]
extern crate log;

extern crate bincode;
extern crate serde;
#[macro_use]
extern crate serde_derive;
extern crate snap;

use std::str;

use bio::alphabets::{dna, protein};
use bio::data_structures::fmindex::*;
use bio::data_structures::suffix_array::{suffix_array, RawSuffixArray};
use bio::data_structures::bwt::*;
use bio::io::fasta;

use std::io::BufWriter;
use std::fs::File;
use std::time::Instant;
use std::collections::HashMap;
use std::collections::HashSet;
use std::collections::BTreeSet;

use std::process;

#[derive(Serialize, Deserialize)]
struct SaveableFMIndex {
    suffix_array: RawSuffixArray,
    bwt: BWT,
    less: Less,
    occ: Occ,
    db_type: DatabaseType,
}

#[derive(Serialize, Deserialize)]
struct SmafaDB {
    version: u8,
    fm_index: SaveableFMIndex
}

struct UnpackedDB {
    saveable_fm_index: SaveableFMIndex,
    text: Vec<u8>,
}

#[derive(Serialize, Deserialize)]
pub enum DatabaseType {
    DNA, Translated
}

pub enum SequenceInputType {
    DNA, Translated, Translate
}

fn current_db_version() -> u8 { 2 }

fn generate_unpacked_db(db_fasta: &str, input_sequence_type: SequenceInputType) -> UnpackedDB {
    let reader = fasta::Reader::new(File::open(db_fasta).unwrap());
    let mut sequence_length: usize = 0; // often 60
    let mut text = vec![];

    let mut now = Instant::now();
    let mut new_now;

    let mut i: u64 = 0;
    for record in reader.records() {
        let record = record.unwrap();
        let translated_sequence;
        let seq = match input_sequence_type {
            SequenceInputType::DNA | SequenceInputType::Translated => record.seq(),
            SequenceInputType::Translate => {
                translated_sequence = translation::translate_codons(record.seq());
                &translated_sequence
            }
        };
        if sequence_length == 0 {
            sequence_length = seq.len();
            debug!("Found first sequence length {}", sequence_length)
        } else if seq.len() != sequence_length {
            eprintln!("Found sequences of different lengths, all sequences must be of the same sequence.");
            process::exit(1);
        }
        text.extend(seq.iter().cloned());
        text.extend_from_slice(b"$");
        i+=1;
    }
    // Add a lexigraphically small character at the end to satisfy BWT
    // constraints. Do not use '\0' in case this is introduced into the bio-rust
    // BWT itself.
    text.extend_from_slice(b"#");
    new_now = Instant::now();
    info!("Read in {} sequences in {} seconds.", i, new_now.duration_since(now).as_secs());

    let db_type = match input_sequence_type {
        SequenceInputType::DNA => DatabaseType::DNA,
        SequenceInputType::Translate => DatabaseType::Translated,
        SequenceInputType::Translated => DatabaseType::Translated,
    };

    let alphabet = match db_type {
        DatabaseType::DNA => dna::n_alphabet(),
        DatabaseType::Translated => protein::alphabet()
    };

    let before_index_generation_time = Instant::now();
    now = new_now;
    let sa = suffix_array(&text);
    new_now = Instant::now(); debug!("suffix array {:?}", new_now.duration_since(now)); now = new_now;
    let bwt1 = bwt(&text, &sa);
    new_now = Instant::now(); debug!("bwt {:?}", new_now.duration_since(now)); now = new_now;
    let less = less(&bwt1, &alphabet);
    new_now = Instant::now(); debug!("less {:?}", new_now.duration_since(now)); now = new_now;
    let occ = Occ::new(&bwt1, 3, &alphabet);
    new_now = Instant::now(); debug!("occ {:?}", new_now.duration_since(now));
    info!("Generated index in {} seconds.",
          Instant::now().duration_since(before_index_generation_time).as_secs());

    let saveable_fm_index = SaveableFMIndex {
        suffix_array: sa,
        bwt: bwt1,
        less: less,
        occ: occ,
        db_type: db_type,
    };
    let unpacked = UnpackedDB {
        saveable_fm_index: saveable_fm_index,
        text: text
    };
    return unpacked;
}

pub fn makedb(db_root: &str, db_fasta: &str, input_type: SequenceInputType){
    let unpacked = generate_unpacked_db(db_fasta, input_type);
    let smafa_db = SmafaDB {
        version: current_db_version(),
        fm_index: unpacked.saveable_fm_index
    };
    let filename = db_root;
    let f = File::create(filename.clone()).unwrap();
    let writer = BufWriter::new(f);
    let mut snapper = snap::Writer::new(writer);
    debug!("Writing {}", filename);
    bincode::serialize_into(&mut snapper, &smafa_db).unwrap();
    debug!("Finished writing.")
}


fn determine_sequence_length(text: &[u8]) -> usize {
    let mut count = 0;
    for (i, &item) in text.iter().enumerate() {
        if item == b'$' as u8 {
            count = i;
            break
        }
    }
    return count
}


pub fn query(db_root: &str, query_fasta: &str, max_divergence: u32,
             print_stream: &mut std::io::Write, k: usize,
             sequence_input_type: SequenceInputType){
    let f = File::open(db_root).expect("file not found");
    let mut unsnapper = snap::Reader::new(f);
    debug!("Deserialising DB ..");
    let smafa_db: SmafaDB = bincode::deserialize_from(&mut unsnapper).expect(
        &format!(
            "Failed to deserialize database, perhaps due to an incompatible \
             database type? This code is expecting version {}",
            current_db_version()));
    debug!("Finished deserialising DB.");
    let fm_saveable = smafa_db.fm_index;

    let sa = fm_saveable.suffix_array;
    let bwt = fm_saveable.bwt;
    let less = fm_saveable.less;
    let occ = fm_saveable.occ;

    debug!("Inverting BWT ..");
    let text = bio::data_structures::bwt::invert_bwt(&bwt);
    debug!("Finished.");

    let mut num_hits: u64 = 0;
    {
        let query_printer = |hit: Hit| {
            num_hits += 1;
            print_stream.write_fmt(
                format_args!("{}\t{}\t{}\t{}\t{}\n",
                             hit.seq_id,
                             str::from_utf8(hit.query_sequence).unwrap(),
                             str::from_utf8(hit.hit_sequence).unwrap(),
                             hit.divergence,
                             hit.total)).unwrap();
        };
        query_with_everything(
            query_fasta, max_divergence, query_printer,
            &sa, &bwt, &less, &occ, &text, k, sequence_input_type);
    }
    info!("Printed {} hit(s).", num_hits);
}


struct Hit<'a, 'b, 'c> {
    seq_id: &'a str,
    query_sequence: &'b [u8],
    hit_sequence: &'c [u8],
    divergence: u32,
    total: u32
}


fn query_with_everything<T>(
    query_fasta: &str,
    max_divergence: u32,
    mut hit_processor: T,
    sa: &RawSuffixArray,
    bwt: &BWT,
    less: &Less,
    occ: &Occ,
    text: &Vec<u8>,
    k: usize,
    sequence_input_type: SequenceInputType)
    where T: FnMut(Hit) {

    let fm = FMIndex::new(bwt, less, occ);

    let sequence_length = determine_sequence_length(text);
    debug!("Found sequence length {}", sequence_length);
    let k2 = if k > sequence_length {
        let kay = sequence_length;
        warn!("Specified kmer {} is greater than the sequence length, changing it to {}",
              k, sequence_length);
        kay
    } else { k };

    let reader = fasta::Reader::new(File::open(query_fasta).unwrap());
    for record in reader.records() {
        let translated_sequence;
        let seq = record.unwrap();
        let pattern = match sequence_input_type {
            SequenceInputType::DNA | SequenceInputType::Translated => seq.seq(),
            SequenceInputType::Translate => {
                translated_sequence = translation::translate_codons(seq.seq());
                &translated_sequence
            }
        };
        debug!("Querying with sequence {}", str::from_utf8(pattern).unwrap());
        if pattern.len() != sequence_length {
            panic!("Query sequence '{}' has length {}, which is not the same \
                    length as sequences in the database {}.",
                   seq.id(), pattern.len(), sequence_length);
        }
        let mut printed_seqs: HashSet<usize> = HashSet::new();
        for i in 0..(sequence_length-k2+1) {
            debug!("Trying position {}", i);
            let intervals = fm.backward_search(pattern[i..(i+k2)].iter());
            let some = intervals.occ(sa);

            // The text is of length 60, plus the sentinal (if sequence_length
            // is 60 as original). So the sequence is located in the text at
            // text[pos/61 .. pos+60] I think.
            for pos in some {
                let sequence_index = pos / (sequence_length + 1);
                let start = sequence_index * (sequence_length + 1);
                if pos-start == i && !printed_seqs.contains(&start) {
                    printed_seqs.insert(start);
                    let subject = &text[(start..(start+sequence_length))];
                    let mut divergence = 0;
                    let total = subject.len();
                    for (s,p) in subject.iter().zip(pattern) {
                        if s != p {
                            divergence = divergence + 1;
                        }
                    }
                    if divergence <= max_divergence {
                        let hit = Hit {
                            seq_id: seq.id(),
                            query_sequence: pattern,
                            hit_sequence: subject,
                            divergence: divergence,
                            total: total as u32
                        };
                        (hit_processor)(hit)
                    }
                }
            }
        }
    }
}

#[derive(Debug)]
struct BestClusterHit {
    divergence: u32,
    hit_sequence_index: u32
}
pub fn cluster(
    fasta_file: &str,
    max_divergence: u32,
    print_stream: &mut std::io::Write,
    input_sequence_type: SequenceInputType,
    k: usize) {
    // For timing
    let mut now = Instant::now();
    let mut new_now;

    // query results are processed in order. We can recognize singletons as
    // sequences that only hit themselves.

    // make a database out of the sequences
    let db = generate_unpacked_db(fasta_file, input_sequence_type);
    new_now = Instant::now(); debug!("index generation time {:?}", new_now.duration_since(now)); now = new_now;

    let res = do_clustering(&db, &fasta_file, max_divergence, k);

    // print out the clusters
    new_now = Instant::now(); debug!("clustering search time {:?}", new_now.duration_since(now)); now = new_now;
    print_uc_file(
        &res.representative_sequence_ids,
        &res.sequence_index_to_best_hit,
        &res.sequence_names,
        determine_sequence_length(&db.text),
        print_stream);
    new_now = Instant::now(); debug!("printing time {:?}", new_now.duration_since(now));
}




struct ClusteringResults {
    representative_sequence_ids: BTreeSet<u32>,
    sequence_index_to_best_hit: HashMap<u32, BestClusterHit>,
    sequence_names: Vec<Box<String>>
}

fn do_clustering<'a>(db: &'a UnpackedDB, fasta_file: &'a str, max_divergence: u32, k: usize) -> ClusteringResults {
    let sa = &db.saveable_fm_index.suffix_array;
    let bwt = &db.saveable_fm_index.bwt;
    let less = &db.saveable_fm_index.less;
    let occ = &db.saveable_fm_index.occ;
    let text = &db.text;

    let fm = FMIndex::new(bwt, less, occ);

    let sequence_length = determine_sequence_length(text);
    debug!("Found sequence length {}", sequence_length);

    let mut sequence_index_to_best_hit: HashMap<u32, BestClusterHit> = HashMap::new();
    let mut representative_sequence_indexes: BTreeSet<u32> = BTreeSet::new();
    let mut sequence_names = vec![];

    let reader = fasta::Reader::new(File::open(fasta_file).unwrap());
    let mut query_sequence_index: u32 = 0;
    for record in reader.records() {
        let seq = record.unwrap();
        let pattern = seq.seq();
        if pattern.len() != sequence_length {
            eprintln!("Sequence '{}' is not the same length as sequences in the database.", seq.id());
            process::exit(3);
        }
        sequence_names.push(Box::new(String::from(seq.id())));
        let mut printed_seqs: HashSet<usize> = HashSet::new();
        for i in 0..(sequence_length-k+1) {
            let intervals = fm.backward_search(pattern[i..(i+k)].iter());
            let some = intervals.occ(sa);

            // The text is of length 60, plus the sentinal (if sequence_length
            // is 60 as original). So the sequence is located in the text at
            // text[pos/61 .. pos+60] I think.
            for pos in some {
                let sequence_index = pos / (sequence_length + 1);
                if sequence_index <= query_sequence_index as usize {
                    let start = sequence_index * (sequence_length + 1);
                    if pos-start == i &&
                        !printed_seqs.contains(&start) {
                            printed_seqs.insert(start);
                            let subject = &text[(start..(start+sequence_length))];
                            let mut divergence = 0;
                            for (s,p) in subject.iter().zip(pattern) {
                                if s != p {
                                    divergence = divergence + 1;
                                }
                            }
                            if divergence <= max_divergence &&
                                representative_sequence_indexes.contains(&(sequence_index as u32)) {
                                    // if it is better than the current hit, replace it
                                    if sequence_index_to_best_hit.contains_key(&query_sequence_index){
                                        // work out the true/false for the if statement here to
                                        // get around the borrow checker.
                                        let mut found_a_better_one = false;
                                        {
                                            let last_best = sequence_index_to_best_hit.get(&query_sequence_index).unwrap();
                                            if divergence < last_best.divergence ||
                                                (divergence == last_best.divergence &&
                                                 (sequence_index as u32) < last_best.hit_sequence_index) {
                                                    found_a_better_one = true;
                                                }
                                        }
                                        if found_a_better_one {
                                            sequence_index_to_best_hit.insert(
                                                query_sequence_index,
                                                BestClusterHit {
                                                    divergence: divergence,
                                                    hit_sequence_index: sequence_index as u32
                                                });
                                        };
                                    } else {
                                        // else if there is no hit in the hashmap, add it
                                        sequence_index_to_best_hit.insert(
                                            query_sequence_index,
                                            BestClusterHit {
                                                divergence: divergence,
                                                hit_sequence_index: sequence_index as u32
                                            });
                                    }
                                }
                        }
                }
            }
        }
        // Account for singletons
        if !sequence_index_to_best_hit.contains_key(&query_sequence_index) {
            representative_sequence_indexes.insert(query_sequence_index);
        }
        query_sequence_index += 1;
    }

    return ClusteringResults {
        representative_sequence_ids: representative_sequence_indexes,
        sequence_index_to_best_hit: sequence_index_to_best_hit,
        sequence_names: sequence_names
    }
}


fn print_uc_file(
    representative_sequence_ids: &BTreeSet<u32>,
    sequence_index_to_best_hit: &HashMap<u32, BestClusterHit>,
    sequence_names: &Vec<Box<String>>,
    alignment_length: usize,
    print_stream: &mut std::io::Write) {

    // Print out cluster centres
    let mut rep_id_to_cluster_id = HashMap::new();
    {
        // work out the number of entries in each cluster
        let mut num_in_each_cluster = HashMap::new();
        for (_, best_hit) in sequence_index_to_best_hit {
            let rep_id = best_hit.hit_sequence_index;
            if num_in_each_cluster.contains_key(&rep_id) {
                let new_num = num_in_each_cluster.get(&rep_id).unwrap() + 1;
                num_in_each_cluster.insert(rep_id, new_num);
            } else {
                num_in_each_cluster.insert(rep_id, 1);
            };
        };
        let mut cluster_id = 0;
        for rep_id in representative_sequence_ids {
            let num_in_cluster = match num_in_each_cluster.get(rep_id) {
                Some(num) => *num+1,
                None => 1
            };
            writeln!(print_stream, "C\t{}\t{}\t*\t*\t*\t*\t*\t{}\t*",
                     cluster_id,
                     num_in_cluster,
                     sequence_names[*rep_id as usize]).unwrap();
            rep_id_to_cluster_id.insert(*rep_id, cluster_id);
            cluster_id += 1;
        }
    }

    // Print out cluster memberships (H) ones
    for (member, best_hit) in sequence_index_to_best_hit {
        let rep_id = best_hit.hit_sequence_index;
        // Round to 1 decimal place.
        let perc_id = ((alignment_length as u32 -best_hit.divergence) as f32 /
                       alignment_length as f32 * 1000.0).round() / 10.0;
        writeln!(print_stream, "H\t{}\t{}\t{}\t*\t*\t*\t{}M\t{}\t{}",
                 rep_id_to_cluster_id.get(&rep_id).unwrap(),
                 alignment_length,
                 perc_id,
                 alignment_length,
                 sequence_names[*member as usize],
                 sequence_names[rep_id as usize]).unwrap();
    }
}

#[cfg(test)]
mod tests {
    extern crate tempfile;
    use super::*;
    use std::io::Read;

    #[test]
    fn makedb_and_query100seqs() {
        let tf_db: tempfile::NamedTempFile = tempfile::NamedTempFile::new().unwrap();
        makedb(
            tf_db.path().to_str().unwrap(),
            "tests/data/4.08.ribosomal_protein_L3_rplC.100random.fna",
            SequenceInputType::DNA);
        let mut res = vec!();
        query(
            tf_db.path().to_str().unwrap(),
            "tests/data/4.08.ribosomal_protein_L3_rplC.100random.fna",
            5,
            &mut res,
            5,
            SequenceInputType::DNA);
        let mut expected: String = "".to_lowercase();
        File::open("tests/data/4.08.ribosomal_protein_L3_rplC.100random.fnaVitself.expected").
            unwrap().read_to_string(&mut expected).unwrap();
        assert_eq!(expected, String::from_utf8(res).unwrap());
    }

    #[test]
    fn test_cluster_hello_world() {
        let fasta = "tests/data/random2_plus_last_like_first.fna";
        let mut res = vec!();
        cluster(fasta, 1, &mut res, SequenceInputType::DNA, 5);
        let mut expected: String = "".to_lowercase();
        File::open("tests/data/random2_plus_last_like_first.fna.cluster-divergence1.uc").
            unwrap().read_to_string(&mut expected).unwrap();
        assert_eq!(expected, String::from_utf8(res).unwrap());
    }

    #[test]
    fn test_cluster_all_singletons() {
        let fasta = "tests/data/random2_plus_last_like_first.fna";
        let mut res = vec!();
        cluster(fasta, 0, &mut res, SequenceInputType::DNA, 5);
        let mut expected: String = "".to_lowercase();
        File::open("tests/data/random2_plus_last_like_first.fna.cluster-divergence0.uc").
            unwrap().read_to_string(&mut expected).unwrap();
        assert_eq!(expected, String::from_utf8(res).unwrap());
    }

    #[test]
    fn test_cluster_many_seqs() {
        let fasta = "tests/data/singlem_plot_test.fna";
        let mut res = vec!();
        cluster(fasta, 5, &mut res, SequenceInputType::DNA, 5);
        let mut expected: String = "".to_lowercase();
        // expected string not manually verified except that the correct number
        // of outputs is observed.
        File::open("tests/data/singlem_plot_test.fna.uc").
            unwrap().read_to_string(&mut expected).unwrap();
        let mut expected_sorted: Vec<&str> = expected.split("\n").collect();
        let observed = String::from_utf8(res).unwrap();
        let mut observed_sorted: Vec<&str> = observed.split("\n").collect();
        assert_eq!(expected_sorted.sort(), observed_sorted.sort());
    }
}

#[cfg(all(feature = "unstable", test))]
mod benches {
    extern crate test;
    use super::*;

    #[bench]
    fn bench_sra_euk_seqs_query(b: &mut test::Bencher) {
        let fasta = "tests/data/sra.euks.4.11.ribosomal_protein_L10.head1000.fa";
        let db = generate_unpacked_db(fasta);
        b.iter(|| {
            let mut num_hits = 0;
            let query_printer = |_hit: Hit| {
                num_hits += 1;
            };
            query_with_everything(
                fasta, 5, query_printer,
                &db.saveable_fm_index.suffix_array,
                &db.saveable_fm_index.bwt,
                &db.saveable_fm_index.less,
                &db.saveable_fm_index.occ,
                &db.text);
        });
    }

    #[bench]
    fn bench_sra_euk_seqs_clustering(b: &mut test::Bencher) {
        let fasta = "tests/data/sra.euks.4.11.ribosomal_protein_L10.head1000.fa";
        let db = generate_unpacked_db(fasta);
        b.iter(|| do_clustering(
            &db,
            fasta,
            5
        ));
    }

}