1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#![deny(missing_docs)]

//! A [`Slock`](struct.Slock.html), or Smart Lock, is a smart wrapper around an atomically reference counted read/write lock.
//!
//! All accesses and modifications are contained, ensuring that threads will never deadlock on a Slock operation.
//!
//! ```rust
//! use slock::*;
//!
//! # async fn do_something_in_a_thread(_: Slock<i32>) {}
//! # async fn do_something_else_in_a_thread(_: Slock<i32>) {}
//! # async fn do_another_thing_in_a_thread(_: Slock<i32>) {}
//! async {
//!     // Create a new lock with an initial value
//!     let lock = Slock::new(5i32);
//!
//!     // Change the lock's value
//!     lock.set(|v| v + 1).await;
//!
//!     // Get the lock's value
//!     let value = lock.get().await;
//!     println!("{}", value); // 6
//!
//!     // Use in multiple threads
//!     tokio::join!(
//!         do_something_in_a_thread(lock.split()),
//!         do_something_else_in_a_thread(lock.split()),
//!         do_another_thing_in_a_thread(lock.split()),
//!     );
//! };
//! ```
//!
//! ## Things not to do
//!
//! ### Don't access a Slock from within another
//!
//! Bad:
//! ```rust,ignore
//! # use slock::*;
//! # use futures::executor::block_on;
//! # async {
//! let lock_1 = Slock::new(0i32);
//! let lock_2 = Slock::new(1i32);
//!
//! // Add the value of lock_2 to lock_1
//! lock_1.set(|v| v + block_on(lock_2.get())).await;
//! # };
//! ```
//!
//! Good:
//! ```rust
//! # use slock::*;
//! # async {
//! let lock_1 = Slock::new(0i32);
//! let lock_2 = Slock::new(1i32);
//!
//! // Add the value of lock_2 to lock_1
//! let v_2 = lock_2.get().await;
//! lock_1.set(|v| v + v_2).await;
//! # };
//! ```

use std::{cmp::Eq, collections::HashMap, hash::Hash, sync::Arc};

use tokio::{
    sync::RwLock,
    time::{error::Elapsed, timeout},
};

struct SlockData<T> {
    pub version: u64,
    pub value: T,
    pub hook: Option<Box<dyn FnMut(&T)>>,
}

/// The [`Slock`] object.
///
/// An atomically reference counted read/write lock with special safety features to avoid deadlocks.
///
/// When used correctly (no nesting lock access functions), deadlocks should be impossible.
pub struct Slock<T> {
    lock: Arc<RwLock<SlockData<T>>>,
}

impl<T> Slock<T> {
    /// Create a new Slock with a given initial value.
    pub fn new(value: T) -> Self {
        let data = SlockData {
            version: 0,
            value,
            hook: None,
        };
        Self {
            lock: Arc::new(RwLock::new(data)),
        }
    }

    /// Extract inner values from within a Slock
    /// ```rust
    /// # use slock::*;
    /// # struct User { name: &'static str };
    /// # let lock = Slock::new(User {name: "bobs"});
    /// # async {
    /// let name = lock.map(|v| v.name).await;
    /// # };
    /// ```
    pub async fn map<F, U>(&self, mapper: F) -> Result<U, Elapsed>
    where
        F: FnOnce(&T) -> U,
    {
        let v = self.lock.read().await;
        timeout(std::time::Duration::from_secs(1), async {
            mapper(&v.value)
        })
        .await
    }

    /// A setter for changing the internal data of the lock.
    /// ```rust
    /// # use slock::*;
    /// let lock = Slock::new(1i32);
    ///
    /// # async {
    /// lock.set(|v| v + 1).await;
    /// lock.set(|_| 6).await;
    /// # };
    /// ```
    pub async fn set<F>(&self, setter: F)
    where
        F: FnOnce(T) -> T,
    {
        let mut data = self.lock.write().await;
        let ptr = &mut data.value as *mut T;
        let new = timeout(std::time::Duration::from_secs(1), async {
            setter(unsafe { ptr.read() })
        })
        .await;
        if let Ok(new) = new {
            timeout(std::time::Duration::from_secs(1), async {
                data.hook.as_mut().map(|hook| hook(&new));
            })
            .await
            .ok();
            unsafe { ptr.write(new) };
        }

        data.version += 1;
    }

    /// Create's a new lock pointing to the same data.
    /// Modifying the data in the new lock will result in
    /// seeing the same change in the old lock.
    /// ```
    /// # use slock::*;
    /// let lock = Slock::new(0i32);
    /// let the_same_lock = lock.split();
    /// ```
    #[deprecated = "Use `clone()` instead"]
    pub fn split(&self) -> Self {
        Self {
            lock: self.lock.clone(),
        }
    }

    /// Subscribe to changes in the lock.
    ///
    /// `hook` will be called any time `Slock::set` is called.
    pub async fn hook<F: 'static>(&self, hook: F)
    where
        F: FnMut(&T),
    {
        let mut data = self.lock.write().await;
        data.hook = Some(Box::new(hook));
    }
}

impl<T> Clone for Slock<T> {
    fn clone(&self) -> Self {
        Self {
            lock: self.lock.clone(),
        }
    }
}

impl<T: Clone> Slock<T> {
    /// Returns a clone of the lock's data.
    pub async fn get_clone(&self) -> T {
        let data = self.lock.read().await;
        data.value.clone()
    }

    /// Create a new lock with data clone from this one.
    pub async fn clone_deep(&self) -> Self {
        return Slock::new(self.get_clone().await);
    }
}

impl<T> Slock<Vec<T>> {
    /// Asyncronously push to a vec.
    /// Note that due to the nature of async code, order cannot be guaranteed.
    pub async fn push(&self, value: T) {
        self.set(|mut v| {
            v.push(value);
            v
        })
        .await;
    }
}

impl<T> Slock<Slock<T>> {
    /// Converts from `Slock<Slock<T>>` to `Slock<T>`
    pub async fn flatten(&self) -> Slock<T> {
        self.map(|inner| inner.clone()).await.unwrap()
    }
}

/// ## HashMaps
///
/// Slock has built-in convenience methods for working with `Slock<HashMap<Slock>>`s
pub type SlockMap<K, V> = Slock<HashMap<K, Slock<V>>>;

impl<K: Eq + Hash + Copy, V> SlockMap<K, V> {
    /// Create a new `Slock` powered `HashMap`
    pub fn new_map() -> Slock<HashMap<K, Slock<V>>> {
        let map: HashMap<K, Slock<V>> = HashMap::new();
        Slock::new(map)
    }

    /// Insert / modify a value in the map at a given key.
    pub async fn insert<F>(&self, key: K, setter: F)
    where
        F: FnOnce(Option<V>) -> V,
    {
        if let Some(data) = self.from_key(key).await {
            data.set(|v| setter(Some(v))).await;
        } else {
            self.set(|mut hash_map| {
                hash_map.insert(key, Slock::new(setter(None)));
                hash_map
            })
            .await;
        }
    }

    /// Get a value from the map at a given key.
    pub async fn from_key(&self, key: K) -> Option<Slock<V>> {
        self.map(|hash_map| {
            let key = key;
            hash_map.get(&key).map(|inner| inner.clone())
        })
        .await
        .unwrap()
    }
}

impl<T: Copy> Slock<T> {
    /// If a lock's data implements copy, this will return an owned copy of it.
    pub async fn get(&self) -> T {
        let data = self.lock.read().await;
        data.value
    }
}

// Implement `Send` and `Sync` for `Slock`
// Note that `Slock` is still usable without these traits, they just can't be used between threads.
unsafe impl<T: Send> Send for Slock<T> {}
unsafe impl<T: Send> Sync for Slock<T> {}