1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//! Provides a vector that uses an external slice for storage.

#![no_std]

use core::ops::{Deref, DerefMut};
use core::mem::replace;
use core::cmp;

/// A Vector using a slice for backing storage (passed in at creation time).
///
/// Changes to the vector are visible in the backing storage after the `SliceVec` is dropped.
///
/// A `SliceVec` can be dereferenced to a truncated slice containing all elements in the `SliceVec`.
/// The returned slice is different from the backing slice in that it only contains the first `n`
/// values, where `n` is the current length of the `SliceVec`. The backing slice may contain unused
/// "dummy" elements after the last element.
///
/// This is essentially a less ergonomic but more flexible version of the `arrayvec` crate's
/// `ArrayVec` type: You have to crate the backing storage yourself, but `SliceVec` works with
/// arrays of *any* length (unlike `ArrayVec`, which works with a fixed set of lengths, since Rust
/// doesn't (yet) have integer generics).
pub struct SliceVec<'a, T: 'a> {
    storage: &'a mut [T],
    len: usize,
}

impl<'a, T> SliceVec<'a, T> {
    /// Create a new `SliceVec`, using the given slice as backing storage for elements.
    ///
    /// The capacity of the vector equals the length of the slice, you have to make sure that the
    /// slice is large enough for all elements.
    pub fn new(storage: &'a mut [T]) -> Self {
        SliceVec {
            storage: storage,
            len: 0,
        }
    }

    /// Returns the maximum number of elements that can be stored in this vector. This is equal to
    /// the length of the backing storage passed at creation of this `SliceVec`.
    pub fn capacity(&self) -> usize {
        self.storage.len()
    }

    /// Returns the number of elements stored in this `SliceVec`.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns `true` if the length of this vector is 0, `false` otherwise.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Tries to append an element to the end of this vector.
    ///
    /// If the backing storage is already full, returns `Err(elem)`.
    pub fn push(&mut self, elem: T) -> Result<(), T> {
        if self.len < self.capacity() {
            self.storage[self.len] = elem;
            self.len += 1;
            Ok(())
        } else {
            Err(elem)
        }
    }

    /// Removes and returns the last elements stored inside the vector, replacing it with `elem`.
    ///
    /// If the vector is empty, returns `None` and drops `elem`.
    pub fn pop_and_replace(&mut self, elem: T) -> Option<T> {
        // FIXME should this return a `Result<T, T>` instead?
        if self.len > 0 {
            self.len -= 1;
            let elem = replace(&mut self.storage[self.len], elem);
            Some(elem)
        } else {
            None
        }
    }

    /// Shortens the vector to `len` elements.
    ///
    /// Excess elements are not dropped. They are kept in the backing slice.
    pub fn truncate(&mut self, len: usize) {
        self.len = cmp::min(self.len, len);
    }

    /// Extract a slice containing the entire vector.
    ///
    /// The returned slice will be shorter than the backing slice if the vector hasn't yet exceeded
    /// its capacity.
    pub fn as_slice(&self) -> &[T] {
        &self.storage[..self.len]
    }

    /// Extract a mutable slice containing the entire vector.
    ///
    /// The returned slice will be shorter than the backing slice if the vector hasn't yet exceeded
    /// its capacity.
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        &mut self.storage[..self.len]
    }
}

impl<'a, T: 'a + Default> SliceVec<'a, T> {
    /// Removes and returns the last element in this vector.
    ///
    /// Returns `None` if the vector is empty.
    ///
    /// This operation is restricted to element types that implement `Default`, since the element's
    /// spot in the backing storage is replaced by a default value.
    pub fn pop(&mut self) -> Option<T> {
        if self.len > 0 {
            self.len -= 1;
            let elem = replace(&mut self.storage[self.len], T::default());
            Some(elem)
        } else {
            None
        }
    }

    /// Removes and returns the element at `index` and replaces it with the last element.
    ///
    /// Panics if `index` is out of bounds.
    pub fn swap_remove(&mut self, index: usize) -> T {
        let len = self.len();
        self.as_mut_slice().swap(index, len - 1);
        // the unwrap should never fail since we already touched the slice, causing a bounds check
        self.pop().expect("swap_remove failed pop")
    }
}

impl<'a, T> Deref for SliceVec<'a, T> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<'a, T> DerefMut for SliceVec<'a, T> {
    fn deref_mut(&mut self) -> &mut [T] {
        self.as_mut_slice()
    }
}

#[test]
fn basic() {
    const CAP: usize = 1;
    let mut storage = [0; CAP];

    {
        let mut s = SliceVec::new(&mut storage);
        assert!(s.is_empty());
        assert_eq!(s.len(), 0);
        assert_eq!(s.capacity(), CAP);

        assert_eq!(s.push(123), Ok(()));
        assert_eq!(s.len(), 1);
        assert!(!s.is_empty());
        assert_eq!(s.as_slice(), &[123]);
        assert_eq!(s.push(42), Err(42));
        assert!(!s.is_empty());
        assert_eq!(s.as_slice(), &[123]);
        assert_eq!(s.pop(), Some(123));
        assert_eq!(s.len(), 0);
        assert!(s.is_empty());
        assert_eq!(s.as_slice(), &[]);
        assert_eq!(&*s, &[]);
    }
}

#[test]
fn swap_remove() {
    let mut storage = [0; 3];

    {
        let mut s = SliceVec::new(&mut storage);
        assert_eq!(s.len(), 0);
        assert_eq!(s.capacity(), 3);

        assert!(s.is_empty());
        assert_eq!(s.push(0), Ok(()));
        assert!(!s.is_empty());
        assert_eq!(s.push(1), Ok(()));
        assert_eq!(s.push(2), Ok(()));
        assert_eq!(s.push(3), Err(3));
        assert_eq!(s.len(), 3);
        assert_eq!(s.swap_remove(0), 0);
        assert!(!s.is_empty());
        assert_eq!(s.len(), 2);
        assert_eq!(s[0], 2);
        assert_eq!(s[1], 1);
        assert_eq!(s.as_slice().len(), 2);
    }
}