1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#![warn(missing_docs, missing_debug_implementations)]
#![no_std]

//! Support for custom slice-based DSTs.
//!
//! By handling allocation manually, we can manually allocate the `Box` for a custom DST.
//! So long as the size lines up with what it should be, once the metadata is created,
//! Rust actually already handles the DSTs it already supports perfectly well, safely!
//! Setting them up is the hard part, which this crate handles for you.
//!
//! # Examples
//!
//! We have a tree structure! Each node holds some data and its children array.
//! In normal Rust, you would probably typically implement it something like this:
//!
//! ```rust
//! # use std::sync::Arc;
//! struct Node {
//!     data: &'static str,
//!     children: Vec<Arc<Node>>,
//! }
//!
//! let a = Node { data: "a", children: vec![] };
//! let b = Node { data: "b", children: vec![] };
//! let c = Node { data: "c", children: vec![] };
//! let abc = Node { data: "abc", children: vec![a.into(), b.into(), c.into()] };
//! ```
//!
//! With this setup, the memory layout looks vaguely like the following diagram:
//!
//! ```text
//!                                              +--------------+
//!                                              |Node          |
//!                                        +---->|data: "a"     |
//! +------------+    +---------------+    |     |children: none|
//! |Node        |    |Vec<Arc<Node>> |    |     +--------------+
//! |data: "abc" |    |[0]: +--------------+     |Node          |
//! |children: +----->|[1]: +------------------->|data: "b"     |
//! +------------+    |[2]: +--------------+     |children: none|
//!                   +---------------|    |     +--------------+
//!                                        |     |Node          |
//!                                        +---->|data: "c"     |
//!                                              |children: none|
//!                                              +--------------+
//! ```
//!
//! With this crate, however, the children array can be stored inline with the node's data:
//!
//! ```rust
//! # use std::{iter, sync::Arc}; use slice_dst::*;
//! struct Node(Arc<SliceWithHeader<&'static str, Node>>);
//!
//! let a = Node(SliceWithHeader::new("a", None));
//! let b = Node(SliceWithHeader::new("b", None));
//! let c = Node(SliceWithHeader::new("c", None));
//! // this vec is just an easy way to get an ExactSizeIterator
//! let abc = Node(SliceWithHeader::new("abc", vec![a, b, c]));
//! ```
//!
//! ```text
//!                          +-----------+
//! +-------------+          |Node       |
//! |Node         |    +---->|length: 0  |
//! |length: 3    |    |     |header: "a"|
//! |header: "abc"|    |     +-----------+
//! |slice: [0]: +-----+     |Node       |
//! |       [1]: +---------->|length: 0  |
//! |       [2]: +-----+     |header: "b"|
//! +-------------+    |     +-----------+
//!                    |     |Node       |
//!                    +---->|length: 0  |
//!                          |header: "c"|
//!                          +------------
//! ```
//!
//! The exact times you will want to use this rather than just standard types varries.
//! This is mostly useful when space optimization is very important.
//! This is still useful when using an arena: it reduces the allocations in the arena
//! in exchange for moving node payloads to the heap alongside the children array.
//!
//! # But how?
//!
//! This is possible because of the following key building blocks:
//!
//! - `Box`'s [memory layout][boxed-memory-layout] is defined and uses the
//!   [global allocator][std::alloc::Global], and is allowed to be manually allocated.
//! - [Array layout][array-layout] and [slice layout][slice-layout] are defined.
//! - [`#[repr(C)]`][repr-c-layout] allows us to make compound types with defined layout.
//! - We can turn an opaque pointer into a slice fat pointer with
//!   [`ptr::slice_from_raw_parts`][slice_from_raw_parts].
//! - We can cast a slice pointer to a pointer to our compound type
//!   in order to keep the correct fat pointer metadata.
//!
//! So with these guarantees, we can "just" manually allocate some space, initialize it
//! for some custom `repr(C)` structure, and convert it into a `Box`. From that point,
//! `Box` handles managing the memory, including deallocation or moving it into another
//! smart pointer, such as `Arc`.
//!
//!   [boxed-memory-layout]: <https://doc.rust-lang.org/stable/std/boxed/index.html#memory-layout>
//!   [array-layout]: <https://doc.rust-lang.org/stable/reference/type-layout.html#array-layout>
//!   [slice-layout]: <https://doc.rust-lang.org/stable/reference/type-layout.html#slice-layout>
//!   [repr-c-layout]: <https://doc.rust-lang.org/stable/reference/type-layout.html#reprc-structs>
//!   [std::alloc::Global]: <https://doc.rust-lang.org/stable/std/alloc/index.html#the-global_allocator-attribute>
//!
//! [`SliceDst`] defines the capabilities required of the pointee type. It must be able to
//! turn a trailing slice length into a [`Layout`] for the whole pointee, and it must provide
//! a way to turn a untyped slice pointer `*mut [()]` into a correctly typed pointer.
//!
//! The functions [`alloc_slice_dst`] and [`alloc_slice_dst_in`] provide a way
//! to allocate space for a `SliceDst` type via the global allocator.
//!
//! [`AllocSliceDst`] types are owning heap pointers that can create a new slice DST.
//! They take an initialization routine that is responsible for initializing the
//! uninitialized allocated place, and do the ceremony required to allocate the place
//! and turn it into the proper type by delgating to `SliceDst` and `alloc_slice_dst`.
//! They also handle panic/unwind safety of the initialization routine and prevent
//! leaking of the allocated place due to an initialization panic.
//!
//! [`TryAllocSliceDst`] is the potentially fallible initialization version.
//!
//! All of these pieces are the glue, but [`SliceWithHeader`] and [`StrWithHeader`]
//! put the pieces together into a safe package. They take a header and an iterator
//! (or copyable slice) and put together all of the pieces to allocate a dynamically
//! sized custom type.
//!
//! Additionaly, though not strictly required, these types store the slice length inline.
//! This gives them the ability to reconstruct pointers from fully type erased pointers
#![cfg_attr(feature = "erasable", doc = "via the [`Erasable`] trait")]
//! .

// All hail Chairity!
// The one who saves our sanity -
// blessing us with Clarity.
// Queen of popularity.
// When haboo becomes a rarity -
// we thank Yoba for Chairity.
// https://twitch.tv/thehaboo

extern crate alloc;

#[cfg(has_ptr_slice_from_raw_parts)]
use core::ptr::slice_from_raw_parts_mut as slice_from_raw_parts;
#[cfg(not(has_ptr_slice_from_raw_parts))]
use core::slice::from_raw_parts_mut as slice_from_raw_parts;
#[cfg(feature = "erasable")]
use erasable::{Erasable, ErasedPtr};
use {
    alloc::{
        alloc::{alloc, dealloc, handle_alloc_error},
        boxed::Box,
        rc::Rc,
        sync::Arc,
    },
    core::{alloc::Layout, mem::ManuallyDrop, ptr},
};

/// A custom slice-based dynamically sized type.
///
/// Unless you are making a custom slice DST that needs to pack its length extremely well,
/// then you should just use [`SliceWithHeader`] instead.
pub unsafe trait SliceDst {
    /// Get the layout of the slice-containing type with the given slice length.
    fn layout_for(len: usize) -> Layout;

    /// Add the type onto an untyped pointer.
    ///
    /// This is used to add the type on during allocation.
    /// This function is required because otherwise Rust cannot
    /// guarantee that the metadata on both sides of the cast lines up.
    ///
    /// # Safety
    ///
    /// The implementation _must not_ dereference the input pointer.
    /// This function is safe because it must work for all input pointers,
    /// without asserting the pointer's validity of any kind, express or implied,
    /// including but not limited to the validities of alignment, fitness for
    /// dereferencing and nullity.
    ///
    /// In practice, this means that the implementation should just be a pointer cast.
    fn retype(ptr: ptr::NonNull<[()]>) -> ptr::NonNull<Self>;
}

unsafe impl<T> SliceDst for [T] {
    fn layout_for(len: usize) -> Layout {
        layout_polyfill::layout_array::<T>(len).unwrap()
    }

    fn retype(ptr: ptr::NonNull<[()]>) -> ptr::NonNull<Self> {
        unsafe { ptr::NonNull::new_unchecked(ptr.as_ptr() as *mut _) }
    }
}

/// Allocate a slice-based DST with the [global allocator][`alloc()`].
///
/// The returned pointer is owned and completely uninitialized;
/// you are required to initialize it correctly.
///
/// If the type to be allocated has zero size,
/// then an arbitrary aligned dangling nonnull pointer is returned.
pub fn alloc_slice_dst<S: ?Sized + SliceDst>(len: usize) -> ptr::NonNull<S> {
    alloc_slice_dst_in(|it| it, len)
}

/// Allocate a slice-based DST with the [global allocator][`alloc()`] within some container.
///
/// The returned pointer is owned and completely uninitialized;
/// you are required to initialize it correctly.
///
/// Note that while this function returns a `ptr::NonNull<S>`,
/// the pointer is to the allocation as specified by `container(S::layout(len))`,
/// so if you want/need a pointer to `S`, you will need to offset it.
///
/// If the layout to be allocated has zero size,
/// then an arbitrary aligned dangling nonnull pointer is returned.
pub fn alloc_slice_dst_in<S: ?Sized + SliceDst, F>(container: F, len: usize) -> ptr::NonNull<S>
where
    F: FnOnce(Layout) -> Layout,
{
    let layout = container(S::layout_for(len));
    unsafe {
        let ptr = if layout.size() == 0 {
            // Do not allocate in the ZST case! CAD97/pointer-utils#23
            ptr::NonNull::new(layout.align() as *mut ())
        } else {
            ptr::NonNull::new(alloc(layout) as *mut ())
        }
        .unwrap_or_else(|| handle_alloc_error(layout));
        let ptr = ptr::NonNull::new_unchecked(slice_from_raw_parts(ptr.as_ptr(), len));
        S::retype(ptr)
    }
}

/// Types that can allocate a custom slice DST within them.
///
/// # Implementation note
///
/// For most types, [`TryAllocSliceDst`] should be the implementation primitive.
/// This trait can then be implemented in terms of `TryAllocSliceDst`:
///
/// ```rust
/// # use {slice_dst::*, std::ptr};
/// # struct Container<T: ?Sized>(Box<T>);
/// # unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Container<S> {
/// #     unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
/// #     where I: FnOnce(ptr::NonNull<S>) -> Result<(), E>
/// #     { unimplemented!() }
/// # }
/// unsafe impl<S: ?Sized + SliceDst> AllocSliceDst<S> for Container<S> {
///     unsafe fn new_slice_dst<I>(len: usize, init: I) -> Self
///     where
///         I: FnOnce(ptr::NonNull<S>),
///     {
///         enum Void {} // or never (!) once it is stable
///         #[allow(clippy::unit_arg)]
///         let init = |ptr| Ok::<(), Void>(init(ptr));
///         match Self::try_new_slice_dst(len, init) {
///             Ok(a) => a,
///             Err(void) => match void {},
///         }
///     }
/// }
/// ```
///
/// This is not a blanket impl due to coherence rules; if the blanket impl were present,
/// it would be impossible to implement `AllocSliceDst` instead of `TryAllocSliceDst`.
pub unsafe trait AllocSliceDst<S: ?Sized + SliceDst> {
    /// Create a new custom slice DST.
    ///
    /// # Safety
    ///
    /// `init` must properly initialize the object behind the pointer.
    /// `init` receives a fully uninitialized pointer and must not read anything before writing.
    unsafe fn new_slice_dst<I>(len: usize, init: I) -> Self
    where
        I: FnOnce(ptr::NonNull<S>);
}

// FUTURE: export? Would need better generic support.
macro_rules! impl_alloc_by_try_alloc {
    ($T:ident) => {
        unsafe impl<S: ?Sized + SliceDst> $crate::AllocSliceDst<S> for $T<S> {
            unsafe fn new_slice_dst<I>(len: usize, init: I) -> Self
            where
                I: FnOnce(::core::ptr::NonNull<S>),
            {
                enum Void {}
                #[allow(clippy::unit_arg)]
                let init = |ptr| ::core::result::Result::<(), Void>::Ok(init(ptr));
                match <Self as $crate::TryAllocSliceDst<S>>::try_new_slice_dst(len, init) {
                    Ok(a) => a,
                    Err(void) => match void {},
                }
            }
        }
    };
}

/// Types that can allocate a custom slice DST within them,
/// given a fallible initialization function.
pub unsafe trait TryAllocSliceDst<S: ?Sized + SliceDst>: AllocSliceDst<S> + Sized {
    /// Create a new custom slice DST with a fallible initialization function.
    ///
    /// # Safety
    ///
    /// `init` must properly initialize the object behind the pointer.
    /// `init` receives a fully uninitialized pointer and must not read anything before writing.
    ///
    /// If the initialization closure panics or returns an error,
    /// the allocated place will be deallocated but not dropped.
    /// To clean up the partially initialized type, we suggest
    /// proxying creation through scope guarding types.
    unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
    where
        I: FnOnce(ptr::NonNull<S>) -> Result<(), E>;
}

// SAFETY: Box is guaranteed to be allocatable by GlobalAlloc.
impl_alloc_by_try_alloc!(Box);
unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Box<S> {
    unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
    where
        I: FnOnce(ptr::NonNull<S>) -> Result<(), E>,
    {
        struct RawBox<S: ?Sized + SliceDst>(ptr::NonNull<S>, Layout);

        impl<S: ?Sized + SliceDst> RawBox<S> {
            unsafe fn new(len: usize) -> Self {
                let layout = S::layout_for(len);
                RawBox(alloc_slice_dst(len), layout)
            }

            unsafe fn finalize(self) -> Box<S> {
                let this = ManuallyDrop::new(self);
                Box::from_raw(this.0.as_ptr())
            }
        }

        impl<S: ?Sized + SliceDst> Drop for RawBox<S> {
            fn drop(&mut self) {
                unsafe {
                    dealloc(self.0.as_ptr().cast(), self.1);
                }
            }
        }

        let ptr = RawBox::new(len);
        init(ptr.0)?;
        Ok(ptr.finalize())
    }
}

// SAFETY: just delegates to `Box`'s implementation (for now?)
impl_alloc_by_try_alloc!(Rc);
unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Rc<S> {
    unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
    where
        I: FnOnce(ptr::NonNull<S>) -> Result<(), E>,
    {
        Box::try_new_slice_dst(len, init).map(Into::into)
    }
}

// SAFETY: just delegates to `Box`'s implementation (for now?)
impl_alloc_by_try_alloc!(Arc);
unsafe impl<S: ?Sized + SliceDst> TryAllocSliceDst<S> for Arc<S> {
    unsafe fn try_new_slice_dst<I, E>(len: usize, init: I) -> Result<Self, E>
    where
        I: FnOnce(ptr::NonNull<S>) -> Result<(), E>,
    {
        Box::try_new_slice_dst(len, init).map(Into::into)
    }
}

pub(crate) mod layout_polyfill;
mod provided_types;

pub use provided_types::{SliceWithHeader, StrWithHeader};