1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use std::ops::Bound;

use crate::{Guard, Measure, M};

use super::*;

#[cfg(any(test, feature = "lock_free_delays"))]
const MAX_LOOPS: usize = usize::max_value();

#[cfg(not(any(test, feature = "lock_free_delays")))]
const MAX_LOOPS: usize = 1_000_000;

fn possible_predecessor(s: &[u8]) -> Option<Vec<u8>> {
    let mut ret = s.to_vec();
    match ret.pop() {
        None => None,
        Some(i) if i == 0 => Some(ret),
        Some(i) => {
            ret.push(i - 1);
            for _ in 0..4 {
                ret.push(255);
            }
            Some(ret)
        }
    }
}

macro_rules! iter_try {
    ($e:expr) => {
        match $e {
            Ok(item) => item,
            Err(e) => return Some(Err(e)),
        }
    };
}

/// An iterator over keys and values in a `Tree`.
pub struct Iter {
    pub(super) tree: Tree,
    pub(super) hi: Bound<IVec>,
    pub(super) lo: Bound<IVec>,
    pub(super) cached_node: Option<(PageId, Node, Guard)>,
    pub(super) going_forward: bool,
}

impl Iter {
    /// Iterate over the keys of this Tree
    pub fn keys(self) -> impl DoubleEndedIterator<Item = Result<IVec>> {
        self.map(|r| r.map(|(k, _v)| k))
    }

    /// Iterate over the values of this Tree
    pub fn values(self) -> impl DoubleEndedIterator<Item = Result<IVec>> {
        self.map(|r| r.map(|(_k, v)| v))
    }

    fn bounds_collapsed(&self) -> bool {
        match (&self.lo, &self.hi) {
            (Bound::Included(ref start), Bound::Included(ref end))
            | (Bound::Included(ref start), Bound::Excluded(ref end))
            | (Bound::Excluded(ref start), Bound::Included(ref end))
            | (Bound::Excluded(ref start), Bound::Excluded(ref end)) => {
                start > end
            }
            _ => false,
        }
    }

    fn low_key(&self) -> &[u8] {
        match self.lo {
            Bound::Unbounded => &[],
            Bound::Excluded(ref lo) | Bound::Included(ref lo) => lo.as_ref(),
        }
    }

    fn high_key(&self) -> &[u8] {
        const MAX_KEY: &[u8] = &[255; 1024 * 1024];
        match self.hi {
            Bound::Unbounded => MAX_KEY,
            Bound::Excluded(ref hi) | Bound::Included(ref hi) => hi.as_ref(),
        }
    }

    pub(crate) fn next_inner(&mut self) -> Option<<Self as Iterator>::Item> {
        let (mut pid, mut node, guard) =
            if let (true, Some((pid, node, guard))) =
                (self.going_forward, self.cached_node.take())
            {
                (pid, node, guard)
            } else {
                let guard = pin();
                let view =
                    iter_try!(self.tree.view_for_key(self.low_key(), &guard));
                (view.pid, view.node.clone(), guard)
            };

        for _ in 0..MAX_LOOPS {
            if self.bounds_collapsed() {
                return None;
            }

            if !node.contains_upper_bound(&self.lo) {
                // view too low (maybe merged, maybe exhausted?)
                let next_pid = node.next?;
                assert_ne!(pid, next_pid);
                let view = if let Some(view) =
                    iter_try!(self.tree.view_for_pid(next_pid, &guard))
                {
                    view
                } else {
                    iter_try!(self.tree.view_for_key(self.low_key(), &guard))
                };

                pid = view.pid;
                node = view.node.clone();
                continue;
            } else if !node.contains_lower_bound(&self.lo, true) {
                // view too high (maybe split, maybe exhausted?)
                let seek_key = possible_predecessor(&node.lo)?;
                let view = iter_try!(self.tree.view_for_key(seek_key, &guard));
                pid = view.pid;
                node = view.node.clone();
                continue;
            }

            if let Some((key, value)) = node.successor(&self.lo) {
                self.lo = Bound::Excluded(key.clone());
                self.cached_node = Some((pid, node, guard));
                self.going_forward = true;

                match self.hi {
                    Bound::Unbounded => return Some(Ok((key, value))),
                    Bound::Included(ref h) if *h >= key => {
                        return Some(Ok((key, value)));
                    }
                    Bound::Excluded(ref h) if *h > key => {
                        return Some(Ok((key, value)));
                    }
                    _ => return None,
                }
            } else {
                if node.hi.is_empty() {
                    return None;
                }
                self.lo = Bound::Included(node.hi.clone());
                continue;
            }
        }
        panic!(
            "fucked up tree traversal next({:?}) on {:?}",
            self.lo, self.tree
        );
    }
}

impl Iterator for Iter {
    type Item = Result<(IVec, IVec)>;

    fn next(&mut self) -> Option<Self::Item> {
        let _measure = Measure::new(&M.tree_scan);
        let _ = self.tree.concurrency_control.read();
        self.next_inner()
    }

    fn last(mut self) -> Option<Self::Item> {
        self.next_back()
    }
}

impl DoubleEndedIterator for Iter {
    fn next_back(&mut self) -> Option<Self::Item> {
        let _measure = Measure::new(&M.tree_reverse_scan);
        let _ = self.tree.concurrency_control.read();

        let (mut pid, mut node, guard) =
            if let (false, Some((pid, node, guard))) =
                (self.going_forward, self.cached_node.take())
            {
                (pid, node, guard)
            } else {
                let guard = pin();

                let view =
                    iter_try!(self.tree.view_for_key(self.high_key(), &guard));
                (view.pid, view.node.clone(), guard)
            };

        for _ in 0..MAX_LOOPS {
            if self.bounds_collapsed() {
                return None;
            }

            if !node.contains_upper_bound(&self.hi) {
                // node too low (maybe merged, maybe exhausted?)
                let next_pid = node.next?;
                assert_ne!(pid, next_pid);
                let view = if let Some(view) =
                    iter_try!(self.tree.view_for_pid(next_pid, &guard))
                {
                    view
                } else {
                    iter_try!(self.tree.view_for_key(self.high_key(), &guard))
                };

                pid = view.pid;
                node = view.node.clone();
                continue;
            } else if !node.contains_lower_bound(&self.hi, false) {
                // view too high (maybe split, maybe exhausted?)
                let seek_key = possible_predecessor(&node.lo)?;
                let view = iter_try!(self.tree.view_for_key(seek_key, &guard));
                pid = view.pid;
                node = view.node.clone();
                continue;
            }

            if let Some((key, value)) = node.predecessor(&self.hi) {
                self.hi = Bound::Excluded(key.clone());
                self.cached_node = Some((pid, node, guard));
                self.going_forward = false;

                match self.lo {
                    Bound::Unbounded => return Some(Ok((key, value))),
                    Bound::Included(ref l) if *l <= key => {
                        return Some(Ok((key, value)));
                    }
                    Bound::Excluded(ref l) if *l < key => {
                        return Some(Ok((key, value)));
                    }
                    _ => return None,
                }
            } else {
                if node.lo.is_empty() {
                    return None;
                }
                self.hi = Bound::Excluded(node.lo.clone());
                continue;
            }
        }
        panic!(
            "fucked up tree traversal next_back({:?}) on {:?}",
            self.hi, self.tree
        );
    }
}

#[test]
fn test_possible_predecessor() {
    assert_eq!(possible_predecessor(b""), None);
    assert_eq!(possible_predecessor(&[0]), Some(vec![]));
    assert_eq!(possible_predecessor(&[0, 0]), Some(vec![0]));
    assert_eq!(
        possible_predecessor(&[0, 1]),
        Some(vec![0, 0, 255, 255, 255, 255])
    );
    assert_eq!(
        possible_predecessor(&[0, 2]),
        Some(vec![0, 1, 255, 255, 255, 255])
    );
    assert_eq!(possible_predecessor(&[1, 0]), Some(vec![1]));
    assert_eq!(
        possible_predecessor(&[1, 1]),
        Some(vec![1, 0, 255, 255, 255, 255])
    );
    assert_eq!(
        possible_predecessor(&[155]),
        Some(vec![154, 255, 255, 255, 255])
    );
}