1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use pagecache::{Measure, M};

use super::*;

/// An iterator over keys in a `Tree`
pub struct Keys<'a>(Iter<'a>);

impl<'a> Iterator for Keys<'a> {
    type Item = Result<Vec<u8>, ()>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|r| r.map(|(k, _v)| k))
    }
}

impl<'a> DoubleEndedIterator for Keys<'a> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|r| r.map(|(k, _v)| k))
    }
}

/// An iterator over values in a `Tree`
pub struct Values<'a>(Iter<'a>);

impl<'a> Iterator for Values<'a> {
    type Item = Result<PinnedValue, ()>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|r| r.map(|(_k, v)| v))
    }
}

impl<'a> DoubleEndedIterator for Values<'a> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|r| r.map(|(_k, v)| v))
    }
}

/// An iterator over keys and values in a `Tree`.
pub struct Iter<'a> {
    pub(super) id: PageId,
    pub(super) inner: &'a Tree,
    pub(super) last_key: Key,
    pub(super) inclusive: bool,
    pub(super) broken: Option<Error<()>>,
    pub(super) done: bool,
    pub(super) guard: Guard,
    // TODO we have to refactor this in light of pages being deleted
}

impl<'a> Iter<'a> {
    /// Iterate over the keys of this Tree
    pub fn keys(self) -> Keys<'a> {
        Keys(self)
    }

    /// Iterate over the values of this Tree
    pub fn values(self) -> Values<'a> {
        Values(self)
    }
}

impl<'a> Iterator for Iter<'a> {
    type Item = Result<(Vec<u8>, PinnedValue), ()>;

    fn next(&mut self) -> Option<Self::Item> {
        let _measure = Measure::new(&M.tree_scan);

        if self.done {
            return None;
        } else if let Some(broken) = self.broken.take() {
            self.done = true;
            return Some(Err(broken));
        };

        loop {
            let pin_guard = self.guard.clone();
            let get_guard = self.guard.clone();

            let res = self
                .inner
                .pages
                .get(self.id, &get_guard)
                .map(|page_get| page_get.unwrap());

            if let Err(e) = res {
                error!("iteration failed: {:?}", e);
                self.done = true;
                return Some(Err(e.danger_cast()));
            }

            // TODO (when implementing merge support) this could
            // be None if the node was removed since the last
            // iteration, and we need to just get the inner
            // node again...
            let (frag, _ptr) = res.unwrap();
            let node = frag.unwrap_base();
            let leaf =
                node.data.leaf_ref().expect("node should be a leaf");
            let prefix = node.lo.inner();

            let search = if self.inclusive {
                self.inclusive = false;
                leaf.binary_search_by(|&(ref k, ref _v)| {
                    prefix_cmp_encoded(k, &self.last_key, prefix)
                })
                .ok()
                .or_else(|| {
                    binary_search_gt(leaf, |&(ref k, ref _v)| {
                        prefix_cmp_encoded(k, &self.last_key, prefix)
                    })
                })
            } else {
                binary_search_gt(leaf, |&(ref k, ref _v)| {
                    prefix_cmp_encoded(k, &self.last_key, prefix)
                })
            };

            if let Some(idx) = search {
                let (k, v) = &leaf[idx];
                let decoded_k = prefix_decode(prefix, &k);
                self.last_key = decoded_k.to_vec();
                let ret =
                    Ok((decoded_k, PinnedValue::new(&*v, pin_guard)));
                return Some(ret);
            }

            match node.next {
                Some(id) => self.id = id,
                None => {
                    assert_eq!(
                        node.hi,
                        Bound::Inf,
                        "if a node has no right sibling, \
                         it must be the upper-bound node"
                    );
                    return None;
                }
            }
        }
    }
}

impl<'a> DoubleEndedIterator for Iter<'a> {
    fn next_back(&mut self) -> Option<Self::Item> {
        let _measure = Measure::new(&M.tree_scan);

        if self.done {
            return None;
        } else if let Some(broken) = self.broken.take() {
            self.done = true;
            return Some(Err(broken));
        };

        loop {
            let pin_guard = self.guard.clone();
            let get_guard = self.guard.clone();

            let res = self
                .inner
                .pages
                .get(self.id, &get_guard)
                .map(|page_get| page_get.unwrap());

            if let Err(e) = res {
                error!("iteration failed: {:?}", e);
                self.done = true;
                return Some(Err(e.danger_cast()));
            }

            // TODO (when implementing merge support) this could
            // be None if the node was removed since the last
            // iteration, and we need to just get the inner
            // node again...
            let (frag, _ptr) = res.unwrap();
            let node = frag.unwrap_base();
            let leaf =
                node.data.leaf_ref().expect("node should be a leaf");
            let prefix = node.lo.inner();

            let search = if self.inclusive {
                self.inclusive = false;
                leaf.binary_search_by(|&(ref k, ref _v)| {
                    prefix_cmp_encoded(k, &self.last_key, prefix)
                })
                .ok()
                .or_else(|| {
                    binary_search_lt(leaf, |&(ref k, ref _v)| {
                        prefix_cmp_encoded(k, &self.last_key, prefix)
                    })
                })
            } else {
                binary_search_lt(leaf, |&(ref k, ref _v)| {
                    prefix_cmp_encoded(k, &self.last_key, prefix)
                })
            };

            if let Some(idx) = search {
                let (k, v) = &leaf[idx];
                let decoded_k = prefix_decode(prefix, &k);
                self.last_key = decoded_k.to_vec();
                let ret =
                    Ok((decoded_k, PinnedValue::new(&*v, pin_guard)));
                return Some(ret);
            }

            // we need to get the node to the right of ours by
            // guessing a key that might land on it, and then
            // fast-forwarding through the right child pointers
            // if we went too far to the left.
            let pred = possible_predecessor(prefix)?;
            let mut next_node =
                match self.inner.path_for_key(pred, &get_guard) {
                    Err(e) => {
                        error!("next_back iteration failed: {:?}", e);
                        self.done = true;
                        return Some(Err(e.danger_cast()));
                    }
                    Ok(path) => path.last().unwrap().0.unwrap_base(),
                };
            while next_node.next != Some(node.id)
                && next_node.lo < node.lo
            {
                let res = self
                    .inner
                    .pages
                    .get(next_node.next?, &get_guard)
                    .map(|page_get| page_get.unwrap());

                if let Err(e) = res {
                    error!("iteration failed: {:?}", e);
                    self.done = true;
                    return Some(Err(e.danger_cast()));
                }
                let (frag, _ptr) = res.unwrap();
                next_node = frag.unwrap_base();
            }

            self.id = next_node.id;
        }
    }
}

fn possible_predecessor(s: &[u8]) -> Option<Vec<u8>> {
    let mut ret = s.to_vec();
    match ret.pop() {
        None => None,
        Some(i) if i == 0 => Some(ret),
        Some(i) => {
            ret.push(i - 1);
            for _ in 0..4 {
                ret.push(255);
            }
            Some(ret)
        }
    }
}

#[test]
fn test_possible_predecessor() {
    assert_eq!(possible_predecessor(b""), None);
    assert_eq!(possible_predecessor(&[0]), Some(vec![]));
    assert_eq!(possible_predecessor(&[0, 0]), Some(vec![0]));
    assert_eq!(
        possible_predecessor(&[0, 1]),
        Some(vec![0, 0, 255, 255, 255, 255])
    );
    assert_eq!(
        possible_predecessor(&[0, 2]),
        Some(vec![0, 1, 255, 255, 255, 255])
    );
    assert_eq!(possible_predecessor(&[1, 0]), Some(vec![1]));
    assert_eq!(
        possible_predecessor(&[1, 1]),
        Some(vec![1, 0, 255, 255, 255, 255])
    );
    assert_eq!(
        possible_predecessor(&[155]),
        Some(vec![154, 255, 255, 255, 255])
    );
}