logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// Copyright © SixtyFPS GmbH <info@sixtyfps.io>
// SPDX-License-Identifier: (GPL-3.0-only OR LicenseRef-SixtyFPS-commercial)

/*!
This module contains color related types for the run-time library.
*/

use crate::properties::InterpolatedPropertyValue;

#[cfg(not(feature = "std"))]
use num_traits::float::Float;

/// RgbaColor stores the red, green, blue and alpha components of a color
/// with the precision of the generic parameter T. For example if T is f32,
/// the values are normalized between 0 and 1. If T is u8, they values range
/// is 0 to 255.
/// This is merely a helper class for use with [`Color`].
#[derive(Copy, Clone, PartialEq, Debug, Default)]
pub struct RgbaColor<T> {
    /// The alpha component.
    pub alpha: T,
    /// The red channel.
    pub red: T,
    /// The green channel.
    pub green: T,
    /// The blue channel.
    pub blue: T,
}

/// Color represents a color in the SixtyFPS run-time, represented using 8-bit channels for
/// red, green, blue and the alpha (opacity).
/// It can be conveniently converted using the `to_` and `from_` (a)rgb helper functions:
/// ```
/// # fn do_something_with_red_and_green(_:f32, _:f32) {}
/// # fn do_something_with_red(_:u8) {}
/// # use sixtyfps_corelib::graphics::{Color, RgbaColor};
/// # let some_color = Color::from_rgb_u8(0, 0, 0);
/// let col = some_color.to_argb_f32();
/// do_something_with_red_and_green(col.red, col.green);
///
/// let RgbaColor { red, blue, green, .. } = some_color.to_argb_u8();
/// do_something_with_red(red);
///
/// let new_col = Color::from(RgbaColor{ red: 0.5, green: 0.65, blue: 0.32, alpha: 1.});
/// ```
#[derive(Copy, Clone, PartialEq, Debug, Default)]
#[repr(C)]
pub struct Color {
    red: u8,
    green: u8,
    blue: u8,
    alpha: u8,
}

impl From<RgbaColor<u8>> for Color {
    fn from(col: RgbaColor<u8>) -> Self {
        Self { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
    }
}

impl From<Color> for RgbaColor<u8> {
    fn from(col: Color) -> Self {
        RgbaColor { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
    }
}

impl From<RgbaColor<u8>> for RgbaColor<f32> {
    fn from(col: RgbaColor<u8>) -> Self {
        Self {
            red: (col.red as f32) / 255.0,
            green: (col.green as f32) / 255.0,
            blue: (col.blue as f32) / 255.0,
            alpha: (col.alpha as f32) / 255.0,
        }
    }
}

impl From<Color> for RgbaColor<f32> {
    fn from(col: Color) -> Self {
        let u8col: RgbaColor<u8> = col.into();
        u8col.into()
    }
}

impl From<RgbaColor<f32>> for Color {
    fn from(col: RgbaColor<f32>) -> Self {
        Self {
            red: (col.red * 255.) as u8,
            green: (col.green * 255.) as u8,
            blue: (col.blue * 255.) as u8,
            alpha: (col.alpha * 255.) as u8,
        }
    }
}

impl Color {
    /// Construct a color from an integer encoded as `0xAARRGGBB`
    pub const fn from_argb_encoded(encoded: u32) -> Color {
        Self {
            red: (encoded >> 16) as u8,
            green: (encoded >> 8) as u8,
            blue: encoded as u8,
            alpha: (encoded >> 24) as u8,
        }
    }

    /// Returns `(alpha, red, green, blue)` encoded as u32
    pub fn as_argb_encoded(&self) -> u32 {
        ((self.red as u32) << 16)
            | ((self.green as u32) << 8)
            | (self.blue as u32)
            | ((self.alpha as u32) << 24)
    }

    /// Construct a color from the alpha, red, green and blue color channel parameters.
    pub const fn from_argb_u8(alpha: u8, red: u8, green: u8, blue: u8) -> Self {
        Self { red, green, blue, alpha }
    }

    /// Construct a color from the red, green and blue color channel parameters. The alpha
    /// channel will have the value 255.
    pub const fn from_rgb_u8(red: u8, green: u8, blue: u8) -> Self {
        Self::from_argb_u8(255, red, green, blue)
    }

    /// Construct a color from the alpha, red, green and blue color channel parameters.
    pub fn from_argb_f32(alpha: f32, red: f32, green: f32, blue: f32) -> Self {
        RgbaColor { alpha, red, green, blue }.into()
    }

    /// Construct a color from the red, green and blue color channel parameters. The alpha
    /// channel will have the value 255.
    pub fn from_rgb_f32(red: f32, green: f32, blue: f32) -> Self {
        Self::from_argb_f32(1.0, red, green, blue)
    }

    /// Converts this color to an RgbaColor struct for easy destructuring.
    pub fn to_argb_u8(&self) -> RgbaColor<u8> {
        RgbaColor::from(*self)
    }

    /// Converts this color to an RgbaColor struct for easy destructuring.
    pub fn to_argb_f32(&self) -> RgbaColor<f32> {
        RgbaColor::from(*self)
    }

    /// Returns the red channel of the color as u8 in the range 0..255.
    pub fn red(self) -> u8 {
        self.red
    }

    /// Returns the green channel of the color as u8 in the range 0..255.
    pub fn green(self) -> u8 {
        self.green
    }

    /// Returns the blue channel of the color as u8 in the range 0..255.
    pub fn blue(self) -> u8 {
        self.blue
    }

    /// Returns the alpha channel of the color as u8 in the range 0..255.
    pub fn alpha(self) -> u8 {
        self.alpha
    }

    /// Returns a new version of this color that has the brightness increased
    /// by the specified factor. This is done by converting the color to the HSV
    /// color space and multiplying the brightness (value) with (1 + factor).
    /// The result is converted back to RGB and the alpha channel is unchanged.
    /// So for example `brighter(0.2)` will increase the brightness by 20%, and
    /// calling `brighter(-0.5)` will return a color that's 50% darker.
    #[must_use]
    pub fn brighter(&self, factor: f32) -> Self {
        let rgba: RgbaColor<f32> = (*self).into();
        let mut hsva: HsvaColor = rgba.into();
        hsva.v *= 1. + factor;
        let rgba: RgbaColor<f32> = hsva.into();
        rgba.into()
    }

    /// Returns a new version of this color that has the brightness decreased
    /// by the specified factor. This is done by converting the color to the HSV
    /// color space and dividing the brightness (value) by (1 + factor). The
    /// result is converted back to RGB and the alpha channel is unchanged.
    /// So for example `darker(0.3)` will decrease the brightness by 30%.
    #[must_use]
    pub fn darker(&self, factor: f32) -> Self {
        let rgba: RgbaColor<f32> = (*self).into();
        let mut hsva: HsvaColor = rgba.into();
        hsva.v /= 1. + factor;
        let rgba: RgbaColor<f32> = hsva.into();
        rgba.into()
    }
}

impl InterpolatedPropertyValue for Color {
    fn interpolate(&self, target_value: &Self, t: f32) -> Self {
        Self {
            red: self.red.interpolate(&target_value.red, t),
            green: self.green.interpolate(&target_value.green, t),
            blue: self.blue.interpolate(&target_value.blue, t),
            alpha: self.alpha.interpolate(&target_value.alpha, t),
        }
    }
}

impl core::fmt::Display for Color {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "argb({}, {}, {}, {})", self.alpha, self.red, self.green, self.blue)
    }
}

#[derive(Debug, Clone, Copy, PartialEq)]
struct HsvaColor {
    h: f32,
    s: f32,
    v: f32,
    alpha: f32,
}

impl From<RgbaColor<f32>> for HsvaColor {
    fn from(col: RgbaColor<f32>) -> Self {
        // RGB to HSL conversion from https://en.wikipedia.org/wiki/HSL_and_HSV#Color_conversion_formulae

        let red = col.red;
        let green = col.green;
        let blue = col.blue;

        let min = red.min(green).min(blue);
        let max = red.max(green).max(blue);
        let chroma = max - min;

        #[allow(clippy::float_cmp)] // `max` is either `red`, `green` or `blue`
        let hue = 60.
            * if chroma == 0. {
                0.0
            } else if max == red {
                ((green - blue) / chroma) % 6.0
            } else if max == green {
                2. + (blue - red) / chroma
            } else {
                4. + (red - green) / chroma
            };

        let saturation = if max == 0. { 0. } else { chroma / max };

        Self { h: hue, s: saturation, v: max, alpha: col.alpha }
    }
}

impl From<HsvaColor> for RgbaColor<f32> {
    fn from(col: HsvaColor) -> Self {
        // RGB to HSL conversion from https://en.wikipedia.org/wiki/HSL_and_HSV#Color_conversion_formulae

        let chroma = col.s * col.v;

        let x = chroma * (1. - ((col.h / 60.) % 2. - 1.).abs());

        let (red, green, blue) = match (col.h / 60.0) as usize {
            0 => (chroma, x, 0.),
            1 => (x, chroma, 0.),
            2 => (0., chroma, x),
            3 => (0., x, chroma),
            4 => (x, 0., chroma),
            5 => (chroma, 0., x),
            _ => (0., 0., 0.),
        };

        let m = col.v - chroma;

        Self { red: red + m, green: green + m, blue: blue + m, alpha: col.alpha }
    }
}

#[test]
fn test_rgb_to_hsv() {
    // White
    assert_eq!(
        HsvaColor::from(RgbaColor::<f32> { red: 1., green: 1., blue: 1., alpha: 0.5 }),
        HsvaColor { h: 0., s: 0., v: 1., alpha: 0.5 }
    );
    assert_eq!(
        RgbaColor::<f32>::from(HsvaColor { h: 0., s: 0., v: 1., alpha: 0.3 }),
        RgbaColor::<f32> { red: 1., green: 1., blue: 1., alpha: 0.3 }
    );

    // Bright greenish, verified via colorizer.org
    assert_eq!(
        HsvaColor::from(RgbaColor::<f32> { red: 0., green: 0.9, blue: 0., alpha: 1.0 }),
        HsvaColor { h: 120., s: 1., v: 0.9, alpha: 1.0 }
    );
    assert_eq!(
        RgbaColor::<f32>::from(HsvaColor { h: 120., s: 1., v: 0.9, alpha: 1.0 }),
        RgbaColor::<f32> { red: 0., green: 0.9, blue: 0., alpha: 1.0 }
    );
}

#[test]
fn test_brighter_darker() {
    let blue = Color::from_rgb_u8(0, 0, 128);
    assert_eq!(blue.brighter(0.5), Color::from_rgb_u8(0, 0, 192));
    assert_eq!(blue.darker(0.5), Color::from_rgb_u8(0, 0, 85));
}

#[cfg(feature = "ffi")]
pub(crate) mod ffi {
    #![allow(unsafe_code)]
    use super::*;

    #[no_mangle]
    pub unsafe extern "C" fn sixtyfps_color_brighter(col: &Color, factor: f32, out: *mut Color) {
        core::ptr::write(out, col.brighter(factor))
    }

    #[no_mangle]
    pub unsafe extern "C" fn sixtyfps_color_darker(col: &Color, factor: f32, out: *mut Color) {
        core::ptr::write(out, col.darker(factor))
    }
}