1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#![doc(html_root_url = "https://docs.rs/simrs/0.1.0")]
#![warn(
    missing_docs,
    trivial_casts,
    trivial_numeric_casts,
    unused_import_braces,
    unused_qualifications
)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(clippy::module_name_repetitions, clippy::default_trait_access)]

//! General purpose simulation library that provides the mechanisms such as: scheduler, state,
//! queues, etc.
//!
//! **NOTE**: This is all experimental right now.
//!
//! The key public types are [`State`], [`Scheduler`], [`Components`], and [`Simulation`].
//! These, along with user-defined simulation components (structs implementing the [`Component`] trait),
//! are the simulation building blocks.
//! Let's first explain each of the above, and then look at examples.
//!
//! # State
//!
//! A simulation must have the ability to mutate its state.
//! This functionality is fully delegated to the [`State`] struct.
//! It can store, remove, and modify values of arbitrary types `T: 'static`.
//! It also allows us to create queues that can be used to move data between components.
//!
//! ## Value Store
//!
//! [`State`] exposes several simple functions to insert, access, modify, and remove values.
//! Existing values are manipulated using special type-safe keys that are generated and
//! returned when inserting the values.
//!
//! ```
//! # use simrs::State;
//! let mut state = State::default();
//! let key = state.insert(7);
//! assert_eq!(state.remove(key), Some(7));
//! ```
//!
//! Note that the following will fail to compile because of incompatible types:
//!
//! ```compile_fail
//! # use simrs::State;
//! let mut state = State::default();
//! let int_key = state.insert(7);
//! let str_key = state.insert("str");
//! let v: i32 = state.get(str_key);
//! ```
//!
//! ## Queues
//!
//! Queues work very similar to storing values but have a different user-facing interface.
//! The access is also done through a key type. However, a different type [`QueueId`] is
//! used for clarity.
//!
//! ```
//! # use simrs::State;
//! let mut state = State::default();
//! let queue_id = state.new_queue();
//! state.send(queue_id, 1);
//! assert_eq!(state.len(queue_id), 1);
//! assert_eq!(state.recv(queue_id), Some(1));
//! assert_eq!(state.recv(queue_id), None);
//! ```
//!
//! Additionally, a bounded queue is available, which will return an error if the size reached
//! the capacity.
//!
//! ```
//! # use simrs::State;
//! let mut state = State::default();
//! let queue_capacity = 1;
//! let queue_id = state.new_bounded_queue(queue_capacity);
//! assert!(state.send(queue_id, 1).is_ok());
//! assert_eq!(state.len(queue_id), 1);
//! assert!(!state.send(queue_id, 2).is_ok());
//! assert_eq!(state.len(queue_id), 1);
//! ```
//!
//! # Components
//!
//! The [`Components`] structure is a container for all registered components.
//! Similarly to values and queues in the state, components are identified by [`ComponentId`].
//!
//! ```
//! # use simrs::{Components, Component, State, Scheduler, ComponentId};
//! struct SomeComponent {
//!     // ...
//! }
//! #[derive(Debug)]
//! enum SomeEvent {
//!     A,
//!     B,
//!     C,
//! }
//! # impl SomeComponent {
//! #     fn new() -> Self {
//! #         SomeComponent {}
//! #     }
//! # }
//! impl Component for SomeComponent {
//!     type Event = SomeEvent;
//!     fn process_event(
//!         &self,
//!         self_id: ComponentId<Self::Event>,
//!         event: &Self::Event,
//!         scheduler: &mut Scheduler,
//!         state: &mut State,
//!     ) {
//!         // Do some work...
//!     }
//! }
//!
//! # fn main() {
//! let mut components = Components::default();
//! let component_id = components.add_component(SomeComponent::new());
//! # }
//! ```
//!
//! # Scheduler
//!
//! The scheduler's main functionality is to keep track of the simulation time and
//! the future events. Events are scheduled to run on a specific component at a specified
//! time interval. Because the events are type-erased, it's up to the component to
//! downcast the event. To make it easy, each component gets a blanket implementation
//! of an internal trait that does that automatically. It is all encapsulated in the
//! `Components` container, as shown in the below example:
//!
//! ```
//! # use simrs::{Components, Component, State, Scheduler, ComponentId};
//! # use std::time::Duration;
//! # struct SomeComponent {
//! #     // ...
//! # }
//! # #[derive(Debug)]
//! # enum SomeEvent {
//! #     A,
//! #     B,
//! #     C,
//! # }
//! # impl SomeComponent {
//! #     fn new() -> Self {
//! #         SomeComponent {}
//! #     }
//! # }
//! # impl Component for SomeComponent {
//! #     type Event = SomeEvent;
//! #     fn process_event(
//! #         &self,
//! #         self_id: ComponentId<Self::Event>,
//! #         event: &Self::Event,
//! #         scheduler: &mut Scheduler,
//! #         state: &mut State,
//! #     ) {
//! #         // Do some work...
//! #     }
//! # }
//! # fn main() {
//! let mut components = Components::default();
//! let mut scheduler = Scheduler::default();
//! let mut state = State::default();
//! let component_id = components.add_component(SomeComponent::new());
//! scheduler.schedule(
//!     Duration::from_secs(1), // schedule 1 second from now
//!     component_id,
//!     SomeEvent::A,
//! );
//! let event_entry = scheduler.pop().unwrap();
//! components.process_event_entry(event_entry, &mut scheduler, &mut state);
//! # }
//! ```
//!
//! # Simulation
//!
//! [`Simulation`] takes aggregates everything under one structure and provides some additional functions.
//! See the example below.
//!
//! # Example
//!
//! ```
//! # use simrs::{Simulation, State, Scheduler, Components, ComponentId, Component, QueueId, Key};
//! # use std::time::Duration;
//! struct Product;
//!
//! struct Producer {
//!     outgoing: QueueId<Product>,
//! }
//!
//! struct Consumer {
//!     incoming: QueueId<Product>,
//!     working_on: Key<Option<Product>>,
//! }
//!
//! #[derive(Debug)]
//! struct ProducerEvent;
//!
//! #[derive(Debug)]
//! enum ConsumerEvent {
//!     Received,
//!     Finished,
//! }
//!
//! impl Producer {
//!     fn produce(&self) -> Product { todo!() }
//!     fn interval(&self) -> std::time::Duration { todo!() }
//! }
//!
//! impl Consumer {
//!     fn produce(&self) -> Product { todo!() }
//!     fn interval(&self) -> std::time::Duration { todo!() }
//!     fn log(&self, product: Product) { todo!() }
//! }
//!
//! impl Component for Producer {
//!     type Event = ProducerEvent;
//!     
//!     fn process_event(
//!         &self,
//!         self_id: ComponentId<ProducerEvent>,
//!         _event: &ProducerEvent,
//!         scheduler: &mut Scheduler,
//!         state: &mut State,
//!     ) {
//!         state.send(self.outgoing, self.produce());
//!         scheduler.schedule(self.interval(), self_id, ProducerEvent);
//!     }
//! }
//!
//! impl Component for Consumer {
//!     type Event = ConsumerEvent;
//!     
//!     fn process_event(
//!         &self,
//!         self_id: ComponentId<ConsumerEvent>,
//!         event: &ConsumerEvent,
//!         scheduler: &mut Scheduler,
//!         state: &mut State,
//!     ) {
//!         let busy = state.get(self.working_on).is_none();
//!         match event {
//!             ConsumerEvent::Received => {
//!                 if busy {
//!                     if let Some(product) = state.recv(self.incoming) {
//!                         state
//!                             .get_mut(self.working_on)
//!                             .map(|w| *w = Some(product));
//!                         scheduler.schedule(
//!                             self.interval(),
//!                             self_id,
//!                             ConsumerEvent::Finished
//!                         );
//!                     }
//!                 }
//!             }
//!             ConsumerEvent::Finished => {
//!                 let product = state.get_mut(self.working_on).unwrap().take().unwrap();
//!                 self.log(product);
//!                 if state.len(self.incoming) > 0 {
//!                         scheduler.schedule(
//!                             Duration::default(),
//!                             self_id,
//!                             ConsumerEvent::Received
//!                         );
//!                 }
//!             }
//!         }
//!     }
//! }
//! ```

use std::cell::Cell;
use std::marker::PhantomData;
use std::rc::Rc;
use std::time::Duration;

type Clock = Rc<Cell<Duration>>;

pub use component::{Component, Components};
pub use scheduler::{ClockRef, EventEntry, Scheduler};
pub use state::State;

use queue::Queue;

mod component;
mod queue;
mod scheduler;
mod state;

static ID_COUNTER: std::sync::atomic::AtomicUsize = std::sync::atomic::AtomicUsize::new(0);

fn generate_next_id() -> usize {
    ID_COUNTER.fetch_add(1, std::sync::atomic::Ordering::SeqCst)
}

/// Simulation struct that puts different parts of the simulation together.
///
/// See the [crate-level documentation](index.html) for more information.
pub struct Simulation {
    /// Simulation state.
    pub state: State,
    /// Event scheduler.
    pub scheduler: Scheduler,
    /// Component container.
    pub components: Components,
}

impl Simulation {
    /// Performs one step of the simulation. Returns `true` if there was in fact an event
    /// available to process, and `false` instead, which signifies that the simulation
    /// ended.
    pub fn step(&mut self) -> bool {
        self.scheduler.pop().map_or(false, |event| {
            self.components
                .process_event_entry(event, &mut self.scheduler, &mut self.state);
            true
        })
    }

    /// Runs the entire simulation from start to end.
    /// This function might not terminate if the end condition is not satisfied.
    pub fn run(&mut self) {
        while self.step() {}
    }

    /// Adds a new component.
    #[must_use]
    pub fn add_component<E: std::fmt::Debug + 'static, C: Component<Event = E> + 'static>(
        &mut self,
        component: C,
    ) -> ComponentId<E> {
        self.components.add_component(component)
    }

    /// Adds a new unbounded queue.
    #[must_use]
    pub fn add_queue<V: 'static>(&mut self) -> QueueId<V> {
        self.state.new_queue()
    }

    /// Adds a new bounded queue.
    #[must_use]
    pub fn add_bounded_queue<V: 'static>(&mut self, capacity: usize) -> QueueId<V> {
        self.state.new_bounded_queue(capacity)
    }

    /// Schedules a new event to be executed at time `time` in component `component`.
    pub fn schedule<E: std::fmt::Debug + 'static>(
        &mut self,
        time: Duration,
        component: ComponentId<E>,
        event: E,
    ) {
        self.scheduler.schedule(time, component, event);
    }
}

impl Default for Simulation {
    fn default() -> Self {
        let state = State::default();
        let components = Components::default();
        Self {
            state,
            components,
            scheduler: Scheduler::default(),
        }
    }
}

/// Defines a strongly typed key type.
macro_rules! key_type {
    ($name:ident, $inner:ty, $doc:literal) => {
        #[doc = $doc]
        #[derive(Debug, PartialEq, Eq, Hash)]
        pub struct $name<V> {
            pub(crate) id: $inner,
            _marker: PhantomData<V>,
        }
        impl<T> $name<T> {
            pub(crate) fn new(id: $inner) -> Self {
                $name {
                    id,
                    _marker: PhantomData,
                }
            }
        }
        impl<T> Clone for $name<T> {
            fn clone(&self) -> Self {
                Self::new(self.id)
            }
        }
        impl<T> Copy for $name<T> {}
    };
}

key_type!(
    ComponentId,
    usize,
    "A type-safe identifier of a component. This is an analogue of [`Key`] used specifically for components."
);

key_type!(
    Key,
    usize,
    r#"A type-safe key used to fetch values from the value store.

# Construction

A key can be constructed only by calling [`State::insert`].
The state assigns a new numerical ID to the inserted value, which is unique throughout
the running of the program.
This ensures type safety, as explained below.

# Type Safety

These keys are type-safe in a sense that a key used to insert a value of type `T` cannot be
used to access a value of another type `U`. An attempt to do so will result in a compile error.
It is achieved by having the key generic over `T`. However, `T` is just a marker, and no
values of type `T` are stored internally.

```compile_fail
# use simulation::{Key, State};
let mut state = State::default();
let id = state.insert(String::from("1"));
let _: Option<i32> = state.remove(id);  // Error!
let _ = state.remove::<i32>(id);        // Error!
```
"#
);

key_type!(
    QueueId,
    usize,
    r#"A type-safe identifier of a queue. This is an analogue of [`Key`] used specifically for queues."#
);