1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
use std;
use std::collections::HashMap;
use std::path::Path;

extern crate sdl2;
use sdl2::image::ImageRWops;
use sdl2::image::LoadSurface;
use sdl2::image::LoadTexture;
use sdl2::pixels;
use sdl2::render;
use sdl2::rwops;
use sdl2::surface;

use event::{self, Event};
use shape;
use util;

/**
 * A Window can display graphics and handle events.
 *
 * A Window has a draw color at all times, and that color is applied to every operation. If you set
 * the color to `(255, 0, 0)`, all drawn graphics and images will have a red tint.
 *
 * Creating multiple Windows is untested and will probably crash!
 *
 */
pub struct Window {
    // sdl graphics
    event_pump: sdl2::EventPump,
    timer_subsystem: sdl2::TimerSubsystem,
    canvas: sdl2::render::Canvas<sdl2::video::Window>,
    foreground_color: pixels::Color,
    font: Option<Font>,

    // events and event logic
    running: bool,
    event_queue: std::vec::Vec<Event>,

    // timing
    target_ticks_per_frame: u32,
    ticks_at_previous_frame: u32,
}

/// Top-level Running / Creation Methods
/// ====================================
impl Window {
    /// Intialize a new running window. `name` is used as a caption.
    pub fn new(name: &str, width: u16, height: u16) -> Self {
        // SDL2 Initialization calls. This section here is the reason we can't easily create
        // multiple Windows. There would have to be some kind of global variable that tracked
        // whether SDL2 had already been init'd.
        //
        // Note that initialization is not the only problem. SDL2 is usually safe to init
        // multiple times, but it's not safe to de-init SDL2 and then continue using it. We'd
        // either have to have an explicit Deinitialize() global function or keep a global count
        // of windows that exist.
        //
        // Both solutions are ugly and error-prone, and would probably break thread safety. Going
        // to assume that there will only be one Window per program.
        //
        // TODO: solve this problem
        //
        let sdl_context = sdl2::init().unwrap();
        let timer_subsystem = sdl_context.timer().unwrap();
        sdl2::image::init(sdl2::image::InitFlag::all()).unwrap();

        let video_subsystem = sdl_context.video().unwrap();
        let event_pump = sdl_context.event_pump().unwrap();
        let sdl_window_builder = video_subsystem.window(name, width as u32, height as u32);
        let sdl_window = sdl_window_builder.build().unwrap();
        let mut canvas = sdl_window.into_canvas().build().unwrap();

        // for transparency
        canvas.set_blend_mode(render::BlendMode::Blend);

        let mut window = Window {
            timer_subsystem: timer_subsystem,
            event_pump: event_pump,
            canvas: canvas,
            running: true,
            event_queue: vec![],
            foreground_color: pixels::Color::RGBA(0, 0, 0, 255),
            target_ticks_per_frame: (1000.0 / 60.0) as u32,
            ticks_at_previous_frame: 0,
            font: None,
        };

        // clear first, then load the default font
        window.clear();
        window.canvas.present();
        window.set_color(255, 255, 255, 255);

        // load the default font
        let font = window
            .load_font(DEFAULT_FONT_BYTES, DEFAULT_FONT_STR.to_string())
            .unwrap();
        window.font = Some(font);

        window
    }

    /// Redrawing and update the display, while maintaining a consistent framerate and updating the
    /// event queue. You should draw your objects immediately before you call this function.
    ///
    /// NOTE: This function returns false if the program should terminate. This allows for nice
    /// constructs like `while app.next_frame() { ... }`
    pub fn next_frame(&mut self) -> bool {
        if !self.running {
            return false;
        }

        self.canvas.present();

        let mut current_ticks = self.timer_subsystem.ticks();
        while current_ticks - self.ticks_at_previous_frame < self.target_ticks_per_frame {
            self.timer_subsystem.delay(3);
            current_ticks = self.timer_subsystem.ticks();
        }
        self.ticks_at_previous_frame = current_ticks;

        // Handle events
        loop {
            let sdl_event = self.event_pump.poll_event();
            match sdl_event {
                None => break,
                Some(sdl_event) => match Event::from_sdl2_event(sdl_event) {
                    Some(Event::Quit) => self.quit(),

                    // any other unrecognized event
                    Some(e) => (self.event_queue.push(e)),
                    None => (),
                },
            };
        }

        true
    }

    /// Return true when there is an event waiting in the queue for processing.
    pub fn has_event(&self) -> bool {
        self.event_queue.len() > 0
    }

    /// Get the next event from the queue. NOTE: If the event queue on the Window is empty, this
    /// function will panic. Call `has_event()` to find out if there is an event ready for
    /// processing.
    ///
    /// Note that events are handled in a first-in-first-out order. If a user presses three keys 1,
    /// 2, 3 during a frame, then the next three calls to next_event will return 1, 2, 3 in the
    /// same order.
    pub fn next_event(&mut self) -> Event {
        self.event_queue.remove(0)
    }

    /// Return true if the button is currently pressed. NOTE: This function is probably not
    /// performant.
    pub fn is_key_down(&self, key: event::Key) -> bool {
        self.event_pump.keyboard_state().is_scancode_pressed(key)
    }

    /// Return true if the specified button is down. NOTE: Unknown mouse buttons are NOT handled
    /// and will always return `false`.
    pub fn is_mouse_button_down(&self, button: event::MouseButton) -> bool {
        let mouse_state = self.event_pump.mouse_state();
        mouse_state.is_mouse_button_pressed(button)
    }

    /// Return the current position of the mouse, relative to the top-left corner of the Window.
    pub fn mouse_position(&self) -> (i32, i32) {
        let mouse_state = self.event_pump.mouse_state();
        (mouse_state.x(), mouse_state.y())
    }

    /// Use this Font for future calls to `print()`.
    pub fn set_font(&mut self, font: Font) {
        self.font = Some(font)
    }

    /// This does not cause the program to exit immediately. It just means that next_frame
    /// will return false on the next call.
    pub fn quit(&mut self) {
        self.running = false;
    }
}

/// Drawing Methods
/// ===============
impl Window {
    /// Windows have a color set on them at all times. This color is applied to every draw
    /// operation. To "unset" the color, call set_color with (255,255,255,255)
    pub fn set_color(&mut self, red: u8, green: u8, blue: u8, alpha: u8) {
        self.foreground_color = pixels::Color::RGBA(red, green, blue, alpha);
    }

    /// Set up the color according to the internal state of the Window.
    fn prepare_to_draw(&mut self) {
        self.canvas.set_draw_color(self.foreground_color);
    }

    // These functions are just aliases onto self.canvas.as you can see.
    pub fn draw_rect(&mut self, rect: shape::Rect) {
        self.prepare_to_draw();
        self.canvas.draw_rect(rect).unwrap();
    }
    pub fn fill_rect(&mut self, rect: shape::Rect) {
        self.prepare_to_draw();
        self.canvas.fill_rect(rect).unwrap();
    }
    pub fn draw_point(&mut self, point: shape::Point) {
        self.prepare_to_draw();
        self.canvas.draw_point(point).unwrap();
    }
    pub fn draw_polygon(&mut self, polygon: shape::Polygon) {
        self.prepare_to_draw();
        self.canvas.draw_points(&polygon[..]).unwrap();
    }

    /// Display the image with its top-left corner at (x, y)
    pub fn draw_image(&mut self, image: &mut Image, x: i32, y: i32) {
        // first, configure the texture for drawing according to the current foreground_color
        util::set_texture_color(&self.foreground_color, &mut image.texture);

        // copy the texture onto the drawer()
        self.canvas
            .copy(
                &(image.texture),
                Some(shape::Rect::new(
                    x,
                    y,
                    image.get_width() as u32,
                    image.get_height() as u32,
                )),
                None,
            )
            .unwrap();
    }

    /// Write the text to the screen at (x, y) using the currently set font on the Window. Return a
    /// Rectangle describing the area of the screen that was modified.
    // TODO: Implement print_rect that wraps text to fit inside of a Rectangle.
    pub fn print(&mut self, text: &str, x: i32, y: i32) -> shape::Rect {
        self.prepare_to_draw();
        let font = match self.font {
            Some(ref mut r) => r,

            // FIXME: shouldn't be possible to have no font, and the `font` field on Window should
            // be updated to reflect this.
            None => panic!("no font set on window"),
        };
        util::set_texture_color(&self.foreground_color, &mut font.texture);

        let mut current_x = x;

        for ch in text.chars() {
            let font_rect = match font.get_rect(ch) {
                None => {
                    // Our Font cannot represent the current character. Leave a little space.
                    current_x += 5;
                    continue;
                }
                Some(r) => r,
            };

            let rect = shape::Rect::new(current_x, y, font_rect.width(), font_rect.height());
            self.canvas
                .copy(&(font.texture), Some(*font_rect), rect)
                .unwrap();

            current_x += font_rect.width() as i32;
        }

        shape::Rect::new(x, y, (current_x - x) as u32, font.get_height() as u32)
    }

    /// Clear the screen to black. Does not affect the current rendering color.
    pub fn clear(&mut self) {
        self.canvas.set_draw_color(pixels::Color::RGB(0, 0, 0));
        self.canvas.clear();
    }

    /// Clear the screen to the color you specify.
    pub fn clear_to_color(&mut self, r: u8, g: u8, b: u8) {
        self.canvas.set_draw_color(pixels::Color::RGB(r, g, b));
        self.canvas.clear();
    }
}

/**
 * Image represents a texture that can be drawn on the screen.
 *
 * Images are immutable, in the sense that they have no methods to modify their contents.
 */
pub struct Image {
    texture: render::Texture,
    width: u32,
    height: u32,
}

impl Image {
    pub fn get_width(&self) -> u32 {
        self.width
    }
    pub fn get_height(&self) -> u32 {
        self.height
    }
}

/**
 * Font is a way to render text, loaded from a specially formatted image.
 *
 * Note that Font is not loaded from a TrueType file, but instead, from a specially formatted
 * image. Loading from an image is a little faster and a little simpler and a little more portable,
 * but has a couple disadvantages. For one, the font size is fixed by the file. To have two
 * different font sizes, you have to create two different Fonts from two different files. Another
 * disadvantage is that these special images are less widely available.
 *
 * This link describes how ImageFonts work: https://love2d.org/wiki/Tutorial:Fonts_and_Text
 */
pub struct Font {
    texture: render::Texture,
    chars: HashMap<char, shape::Rect>,
    height: u32,
}

impl Font {
    /// Determine whether "ch" exists in this Font.
    pub fn is_printable(&self, ch: char) -> bool {
        self.chars.contains_key(&ch)
    }

    /// Return the number of printable characters that the Font contains.
    pub fn len(&self) -> usize {
        self.chars.len()
    }

    /// Return the height of the Font. This is constant for every possible character, while the
    /// individual character widths vary. Note that certain characters (such a single quote `'`)
    /// might not actually take up all of `height`. However, no character may exceed this limit.
    pub fn get_height(&self) -> u32 {
        self.height
    }

    /// Return the portion of the Font's texture that is used to draw the `char` you provide. If
    /// the character can't be drawn by this Font, return None.
    fn get_rect(&self, ch: char) -> Option<&shape::Rect> {
        self.chars.get(&ch)
    }
}

/// This is the default font.
const DEFAULT_FONT_BYTES: &'static [u8] = include_bytes!("default_font.png");
const DEFAULT_FONT_STR: &'static str =
    " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,!?-+/():;%&`'*#=[]\"";

/// Resource Loading Methods
/// ========================
impl Window {
    /// Load the image at the path you specify.
    pub fn load_image_from_file(&self, filename: &Path) -> Result<Image, String> {
        let mut texture = try!(self.canvas.texture_creator().load_texture(&filename));
        texture.set_blend_mode(render::BlendMode::Blend);
        Ok(Image {
            width: texture.query().width,
            height: texture.query().height,
            texture: texture,
        })
    }

    /// Load an image from a slice of bytes. This function is particularly powerful when
    /// used in conjunction with the `include_bytes` macro that embeds data in the compiled
    /// executable. In this way, you can pack all of your game data into your executable.
    pub fn load_image(&self, data: &[u8]) -> Result<Image, String> {
        let rwops = try!(rwops::RWops::from_bytes(data));
        let surf: surface::Surface = try!(rwops.load());
        let mut texture = match self
            .canvas
            .texture_creator()
            .create_texture_from_surface(&surf)
        {
            Ok(t) => t,
            Err(e) => return Err(e.to_string()),
        };
        texture.set_blend_mode(render::BlendMode::Blend);
        Ok(Image {
            width: texture.query().width,
            height: texture.query().height,
            texture: texture,
        })
    }

    // TODO: Split this out so it can be tested.

    /// Parse a font from the Surface, using the string as a guideline.
    fn parse_image_font(&self, surf: surface::Surface, string: String) -> Result<Font, String> {
        if util::string_has_duplicate_chars(string.clone()) {
            return Err("image font string has duplicate characters".to_string());
        }

        let surf = surf;
        let mut chars: HashMap<char, shape::Rect> = HashMap::new();

        let surf_width = surf.width();
        let surf_height = surf.height();
        let mut current_rect: Option<shape::Rect> = None;

        surf.with_lock(|pixels| {
            // `pixels` is an array of [u8; width * height]
            let border_color = pixels[0];

            // Move through the surface and divide it into rectangles according to the color of the
            // topmost pixel.
            for i in 0..(surf_width as usize) {
                if pixels[i] == border_color {
                    match current_rect {
                        Some(mut rect) => {
                            let c = match string.chars().nth(chars.len()) {
                                Some(c) => c,
                                None => {
                                    // Out of characters to add to the hashmap, so just return with
                                    // what have parsed so far.
                                    return;
                                }
                            };
                            rect = shape::Rect::new(
                                rect.x(),
                                rect.y(),
                                ((i as i32) - rect.x()) as u32,
                                rect.height(),
                            );
                            chars.insert(c, rect.clone());
                            current_rect = None;
                        }
                        None => (),
                    }
                } else {
                    match current_rect {
                        Some(_) => (),
                        None => {
                            current_rect = Some(shape::Rect::new(i as i32, 0, 1, surf_height));
                        }
                    }
                }
            }
        });

        let mut texture = match self
            .canvas
            .texture_creator()
            .create_texture_from_surface(&surf)
        {
            Ok(t) => t,
            Err(e) => return Err(e.to_string()),
        };
        texture.set_blend_mode(render::BlendMode::Blend);
        Ok(Font {
            height: texture.query().height,
            texture: texture,
            chars: chars,
        })
    }

    /// Load a Font from the hard drive. See the documentation on `Font` for details.
    pub fn load_font_from_file(&self, filename: &Path, string: String) -> Result<Font, String> {
        let surf: surface::Surface = try!(LoadSurface::from_file(filename));
        self.parse_image_font(surf, string)
    }

    /// Load a Font from a slice of bytes. See the documentation on `Font` for details. This
    /// function is particularly powerful when used in conjunction with the `include_bytes` macro
    /// that embeds data in the compiled executable.
    pub fn load_font(&self, data: &[u8], string: String) -> Result<Font, String> {
        let rwops = try!(rwops::RWops::from_bytes(data));
        let surf: surface::Surface = try!(rwops.load());
        self.parse_image_font(surf, string)
    }
}