1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//! # Simple Pagerank
//!
//! Pretty simple generic implementation of the PageRank graph sorting algorithm.
#![deny(missing_docs)]
#![allow(warnings)]
use std::collections::HashMap;
use std::default::Default;
use std::hash::Hash;

#[derive(Clone)]
struct Node<T>
where
    T: Eq + Hash + Clone,
{
    /// Edge type
    node: T,
    /// List of edges (the ids which are edges in `nodes`)
    in_edges: Vec<usize>,
    /// Number of out edges
    out_edges: usize,
    score: f64,
}

/// PageRank structure.
///
pub struct Pagerank<T>
where
    T: Eq + Hash + Clone,
{
    /// Damping factor
    ///
    /// The PageRank theory holds that an imaginary surfer who is randomly clicking on edges will
    /// eventually stop clicking. The probability, at any step, that the person will continue is a
    /// damping factor d. Various studies have tested different damping factors, but it is generally
    /// assumed that the damping factor will be set around 0.85.
    damping: f64,
    /// List of nodes. Each node is uniquely identified by their type T.
    nodes: Vec<Node<T>>,
    /// Total number of elements
    edges: usize,
    /// Keeps track of nodes and their position in the nodes vector.
    node_positions: HashMap<T, usize>,
    /// Cache to keep the count of total nodes with incoming edges. This cache gets reset everytime
    /// a new node is being added to the graph.
    nodes_with_in_edges: Option<usize>,
}

impl<T> Pagerank<T>
where
    T: Eq + Hash + Clone,
{
    /// Creates a new instance
    pub fn new() -> Pagerank<T> {
        Pagerank::<T> {
            damping: 0.85,
            nodes: Vec::new(),
            edges: 0,
            node_positions: HashMap::<T, usize>::new(),
            nodes_with_in_edges: None,
        }
    }

    /// Sets the dumping factor. A value between 0 and 100 is expected.
    pub fn set_damping_factor(
        &mut self,
        factor: u8,
    ) -> Result<(), String> {
        if factor >= 100 {
            return Err("{val} needs to be bellow 100".to_string());
        }

        self.damping = factor as f64 / 100_f64;
        Ok(())
    }

    /// Adds an node between two nodes
    pub fn add_edge(&mut self, source: T, target: T) {
        let source = self.get_or_create_node(source);
        let target = self.get_or_create_node(target);
        self.nodes[source].out_edges += 1;
        self.nodes[target].in_edges.push(source);
        self.edges += 1;
    }

    /// Returns the current score of a gien node
    pub fn get_score(&self, node: T) -> Option<f64> {
        self.node_positions
            .get(&node)
            .map(|id| self.nodes[*id].score)
    }

    /// Returns the number of in edges for the given node
    pub fn get_in_edges(&self, node: T) -> Option<usize> {
        self.node_positions
            .get(&node)
            .map(|id| self.nodes[*id].in_edges.len())
    }

    /// Returns the number of out edges for the given node
    pub fn get_out_edges(&self, node: T) -> Option<usize> {
        self.node_positions
            .get(&node)
            .map(|id| self.nodes[*id].out_edges)
    }

    /// Returns the node_id for a given node name
    pub fn get_or_create_node(&mut self, node: T) -> usize {
        match self.node_positions.get(&node) {
            Some(&value) => value,
            _ => {
                let id = self.nodes.len();
                self.nodes.push(Node::<T> {
                    node: node.clone(),
                    in_edges: Vec::new(),
                    out_edges: 0,
                    score: 1f64 - self.damping,
                });
                self.node_positions.insert(node, id);
                self.nodes_with_in_edges = None;
                id
            }
        }
    }

    /// Calculates PageRank with custom convergence
    pub fn calculate_with_convergence(
        &mut self,
        convergence: f64,
    ) -> i32 {
        let mut iterations = 0;

        loop {
            if self.calculate_step() < convergence {
                break;
            }
            iterations += 1;
        }

        iterations
    }

    /// Calculates pagerank with custom convergence
    pub fn calculate(&mut self) -> i32 {
        self.calculate_with_convergence(0.01)
    }

    /// Return all nodes, sorted by their pagerank
    pub fn nodes(&self) -> Vec<(&T, f64)> {
        let mut nodes = self
            .nodes
            .iter()
            .map(|node| (&node.node, node.score))
            .collect::<Vec<(&T, f64)>>();

        nodes.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());

        nodes
    }

    /// Calculates a single iteration of the PageRank
    pub fn calculate_step(&mut self) -> f64 {
        let mut current_iteration = self.nodes.clone();

        let nodes = &self.nodes;

        self.nodes
            .iter()
            .enumerate()
            .map(|(id, n)| {
                let score = n
                    .in_edges
                    .iter()
                    .map(|node| {
                        nodes[*node].score
                            / nodes[*node].out_edges as f64
                    })
                    .sum::<f64>();

                current_iteration[id].score =
                    (1f64 - self.damping) + (self.damping * score);
            })
            .for_each(drop);

        let convergence: f64 = self
            .nodes
            .iter()
            .enumerate()
            .map(|(id, n)| {
                let diff = n.score - current_iteration[id].score;
                diff * diff
            })
            .sum();

        self.nodes = current_iteration;

        convergence.sqrt() / self.len_nodes_with_in_edges() as f64
    }

    /// Len of all edges
    pub fn len_nodes_with_in_edges(&mut self) -> usize {
        if let Some(n) = self.nodes_with_in_edges {
            return n;
        }

        let mut total = 0;

        for node in self.nodes.iter() {
            if node.in_edges.len() > 0 {
                total += 1;
            }
        }

        self.nodes_with_in_edges = Some(total);

        total
    }

    /// Return the number of vertices/nodes in the current graph
    pub fn len(&self) -> usize {
        self.nodes.len()
    }

    /// Returns the number of edges in the current graph
    pub fn len_node(&self) -> usize {
        self.edges
    }

    /// If the graph is empty
    pub fn is_empty(&self) -> bool {
        self.nodes.is_empty()
    }
}

impl<T> Default for Pagerank<T>
where
    T: Eq + Hash + Clone,
{
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
mod tests {
    use crate::Pagerank;

    #[test]
    fn test_two_nodes_are_created() {
        let mut pr = Pagerank::<&str>::new();
        pr.add_edge("foo", "bar");
        assert_eq!(2, pr.len())
    }

    #[test]
    fn test_edges() {
        let mut pr = Pagerank::<&str>::new();
        pr.add_edge("foo", "bar");
        assert_eq!(0, pr.get_or_create_node("foo"));
        assert_eq!(1, pr.get_or_create_node("bar"));

        assert_eq!(Some(0), pr.get_in_edges("foo"));
        assert_eq!(Some(1), pr.get_out_edges("foo"));
        assert_eq!(Some(1), pr.get_in_edges("bar"));
        assert_eq!(Some(0), pr.get_out_edges("bar"));
    }

    #[test]
    fn test_default_score() {
        let mut pr = Pagerank::<&str>::new();
        pr.add_edge("foo", "bar");
        pr.add_edge("bar", "foo");
        pr.add_edge("xxx", "bar");
        pr.add_edge("yyy", "xxx");

        assert_eq!(
            15_i64,
            (pr.get_score("foo").expect("float") * 100_f64) as i64
        );
        assert_eq!(pr.get_score("foo"), pr.get_score("bar"));
        assert_eq!(pr.get_score("foo"), pr.get_score("xxx"));
        assert_eq!(pr.get_score("foo"), pr.get_score("yyy"));
    }

    #[test]
    fn test_iteration() {
        let mut pr = Pagerank::<&str>::new();
        pr.add_edge("foo", "bar");
        pr.add_edge("bar", "foo");
        pr.add_edge("xxx", "bar");
        pr.add_edge("yyy", "xxx");

        pr.calculate_step();

        assert_eq!(
            vec!["bar", "foo", "xxx", "yyy"],
            pr.nodes()
                .iter()
                .map(|(node, _)| **node)
                .collect::<Vec<&str>>()
        );
    }

    #[test]
    fn test_iterations() {
        let mut pr = Pagerank::<&str>::new();
        pr.add_edge("foo", "bar");
        pr.add_edge("bar", "foo");
        pr.add_edge("xxx", "bar");
        pr.add_edge("yyy", "xxx");

        assert_eq!(true, pr.calculate_step() > pr.calculate_step());
        pr.calculate_step();

        assert_eq!(
            vec!["bar", "foo", "xxx", "yyy"],
            pr.nodes()
                .iter()
                .map(|(node, _)| **node)
                .collect::<Vec<&str>>()
        );
    }

    #[test]
    fn test_full_run() {
        let mut pr = Pagerank::<&str>::new();
        pr.add_edge("foo", "bar");
        pr.add_edge("bar", "foo");
        pr.add_edge("xxx", "bar");
        pr.add_edge("yyy", "xxx");

        assert_eq!(16, pr.calculate());

        assert_eq!(
            vec!["bar", "foo", "xxx", "yyy"],
            pr.nodes()
                .iter()
                .map(|(node, _)| **node)
                .collect::<Vec<&str>>()
        );
    }

    #[test]
    /// https://en.wikipedia.org/wiki/PageRank#/media/File:PageRanks-Example.svg
    fn test_pagerank_example() {
        let mut pr = Pagerank::new();
        let edges = vec![
            ("D", "A"),
            ("D", "B"),
            ("B", "C"),
            ("C", "B"),
            ("E", "B"),
            ("E", "F"),
            ("F", "B"),
            ("F", "E"),
            ("G", "B"),
            ("G", "E"),
            ("H", "B"),
            ("H", "E"),
            ("I", "B"),
            ("I", "E"),
            ("J", "E"),
            ("K", "E"),
        ];

        edges
            .iter()
            .map(|(l1, l2)| pr.add_edge(*l1, *l2))
            .for_each(drop);

        pr.calculate();

        assert_eq!(
            vec![
                "B", "C", "E", "F", "A", "D", "G", "H", "I", "J", "K"
            ],
            pr.nodes()
                .iter()
                .map(|(node, _)| **node)
                .collect::<Vec<&str>>()
        );
    }
}