1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use std::f64::INFINITY;

use serde::{Deserialize, Serialize};

use super::model_trait::{AsModel, SerializableModel};
use super::ModelMessage;
use crate::simulator::Services;
use crate::utils::error::SimulationError;

use sim_derive::SerializableModel;

/// The batching process begins when the batcher receives a job.  It will
/// then accept additional jobs, adding them to a batch with the first job,
/// until a max batching time or max batch size is reached - whichever comes
/// first.  If the simultaneous arrival of multiple jobs causes the max batch
/// size to be exceeded, then the excess jobs will spillover into the next
/// batching period.  In this case of excess jobs, the next batching period
/// begins immediately after the release of the preceding batch.  If there
/// are no excess jobs, the batcher will become passive, and wait for a job
/// arrival to initiate the batching process.  
#[derive(Debug, Clone, Deserialize, Serialize, SerializableModel)]
#[serde(rename_all = "camelCase")]
pub struct Batcher {
    ports_in: PortsIn,
    ports_out: PortsOut,
    max_batch_time: f64,
    max_batch_size: usize,
    #[serde(default)]
    state: State,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct PortsIn {
    job: String,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct PortsOut {
    job: String,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct State {
    phase: Phase,
    until_next_event: f64,
    jobs: Vec<String>,
}

impl Default for State {
    fn default() -> Self {
        State {
            phase: Phase::Passive,
            until_next_event: INFINITY,
            jobs: Vec::new(),
        }
    }
}

#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
enum Phase {
    Passive,  // Doing nothing
    Batching, // Building a batch
    Release,  // Releasing a batch
}

impl Batcher {
    pub fn new(
        job_in_port: String,
        job_out_port: String,
        max_batch_time: f64,
        max_batch_size: usize,
    ) -> Self {
        Self {
            ports_in: PortsIn { job: job_in_port },
            ports_out: PortsOut { job: job_out_port },
            max_batch_time,
            max_batch_size,
            state: Default::default(),
        }
    }

    fn add_to_batch(&mut self, incoming_message: &ModelMessage) -> Result<(), SimulationError> {
        self.state.phase = Phase::Batching;
        self.state.jobs.push(incoming_message.content.clone());
        Ok(())
    }

    fn start_batch(&mut self, incoming_message: &ModelMessage) -> Result<(), SimulationError> {
        self.state.phase = Phase::Batching;
        self.state.until_next_event = self.max_batch_time;
        self.state.jobs.push(incoming_message.content.clone());
        Ok(())
    }

    fn fill_batch(&mut self, incoming_message: &ModelMessage) -> Result<(), SimulationError> {
        self.state.phase = Phase::Release;
        self.state.until_next_event = 0.0;
        self.state.jobs.push(incoming_message.content.clone());
        Ok(())
    }

    fn release_full_queue(&mut self) -> Result<Vec<ModelMessage>, SimulationError> {
        self.state.phase = Phase::Passive;
        self.state.until_next_event = INFINITY;
        Ok((0..self.state.jobs.len())
            .map(|_| ModelMessage {
                port_name: self.ports_out.job.clone(),
                content: self.state.jobs.remove(0),
            })
            .collect())
    }

    fn release_partial_queue(&mut self) -> Result<Vec<ModelMessage>, SimulationError> {
        self.state.phase = Phase::Batching;
        self.state.until_next_event = self.max_batch_time;
        Ok((0..self.max_batch_size)
            .map(|_| ModelMessage {
                port_name: self.ports_out.job.clone(),
                content: self.state.jobs.remove(0),
            })
            .collect())
    }
}

impl AsModel for Batcher {
    fn status(&self) -> String {
        match self.state.phase {
            Phase::Passive => String::from("Passive"),
            Phase::Batching => String::from("Creating batch"),
            Phase::Release => String::from("Releasing batch"),
        }
    }

    fn events_ext(
        &mut self,
        incoming_message: &ModelMessage,
        _services: &mut Services,
    ) -> Result<(), SimulationError> {
        if self.state.phase == Phase::Batching && self.state.jobs.len() + 1 < self.max_batch_size {
            self.add_to_batch(incoming_message)
        } else if self.state.phase == Phase::Passive
            && self.state.jobs.len() + 1 < self.max_batch_size
        {
            self.start_batch(incoming_message)
        } else if self.state.jobs.len() + 1 >= self.max_batch_size {
            self.fill_batch(incoming_message)
        } else {
            Err(SimulationError::InvalidModelState)
        }
    }

    fn events_int(
        &mut self,
        _services: &mut Services,
    ) -> Result<Vec<ModelMessage>, SimulationError> {
        if self.state.jobs.len() <= self.max_batch_size {
            self.release_full_queue()
        } else if self.state.jobs.len() <= self.max_batch_size {
            self.release_partial_queue()
        } else {
            Err(SimulationError::InvalidModelState)
        }
    }

    fn time_advance(&mut self, time_delta: f64) {
        self.state.until_next_event -= time_delta;
    }

    fn until_next_event(&self) -> f64 {
        self.state.until_next_event
    }
}