1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use std::any::Any;
use std::f64::INFINITY;

use serde::{Deserialize, Serialize};

use super::model::Model;
use super::ModelMessage;
use crate::input_modeling::random_variable::ContinuousRandomVariable;
use crate::input_modeling::thinning::Thinning;
use crate::input_modeling::uniform_rng::UniformRNG;
use crate::utils::error::SimulationError;

/// The generator produces jobs based on a configured interarrival
/// distribution. A normalized thinning function is used to enable
/// non-stationary job generation. For non-stochastic generation of jobs, a
/// random variable distribution with a single point can be used - in which
/// case, the time between job generation is constant. This model will
/// produce jobs through perpetuity, and the generator does not receive
/// messages or otherwise change behavior throughout a simulation (except
/// through the thinning function).
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct Generator {
    id: String,
    // Time between job generations
    message_interdeparture_time: ContinuousRandomVariable,
    // Thinning for non-stationarity
    #[serde(default)]
    thinning: Option<Thinning>,
    ports_in: PortsIn,
    ports_out: PortsOut,
    #[serde(default)]
    state: State,
    #[serde(default)]
    snapshot: Metrics,
    #[serde(default)]
    history: Vec<Metrics>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
struct PortsIn {
    snapshot: Option<String>,
    history: Option<String>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
struct PortsOut {
    job: String,
    snapshot: Option<String>,
    history: Option<String>,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct State {
    event_list: Vec<ScheduledEvent>,
    until_message_interdeparture: f64,
    job_counter: usize,
    #[serde(default)]
    global_time: f64,
}

impl Default for State {
    fn default() -> Self {
        let initalization_event = ScheduledEvent {
            time: 0.0,
            event: Event::Run,
        };
        State {
            event_list: vec![initalization_event],
            until_message_interdeparture: INFINITY,
            job_counter: 0,
            global_time: 0.0,
        }
    }
}

#[derive(Debug, Clone, Serialize, Deserialize)]
enum Event {
    Run,
    BeginGeneration,
    SendJob,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
struct ScheduledEvent {
    time: f64,
    event: Event,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
struct Metrics {
    last_generation: Option<(String, f64)>,
}

impl Default for Metrics {
    fn default() -> Self {
        Metrics {
            last_generation: None,
        }
    }
}

impl Generator {
    fn need_snapshot_metrics(&self) -> bool {
        self.ports_in.snapshot.is_some() && self.ports_out.snapshot.is_some()
    }

    fn need_historical_metrics(&self) -> bool {
        self.need_snapshot_metrics()
            && self.ports_in.history.is_some()
            && self.ports_out.history.is_some()
    }
}

impl Model for Generator {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn id(&self) -> String {
        self.id.clone()
    }

    fn status(&self) -> String {
        format!["Generating {}s", self.ports_out.job]
    }

    fn events_ext(
        &mut self,
        _uniform_rng: &mut UniformRNG,
        _incoming_message: ModelMessage,
    ) -> Result<Vec<ModelMessage>, SimulationError> {
        Ok(Vec::new())
    }

    fn events_int(
        &mut self,
        uniform_rng: &mut UniformRNG,
    ) -> Result<Vec<ModelMessage>, SimulationError> {
        let mut outgoing_messages: Vec<ModelMessage> = Vec::new();
        let events = self.state.event_list.clone();
        self.state.event_list = self
            .state
            .event_list
            .iter()
            .filter(|scheduled_event| scheduled_event.time != 0.0)
            .cloned()
            .collect();
        events
            .iter()
            .filter(|scheduled_event| scheduled_event.time == 0.0)
            .map(
                |scheduled_event| -> Result<Vec<ModelMessage>, SimulationError> {
                    match scheduled_event.event {
                        Event::Run => {
                            self.state.event_list.push(ScheduledEvent {
                                time: 0.0,
                                event: Event::BeginGeneration,
                            });
                        }
                        Event::BeginGeneration => {
                            self.state.until_message_interdeparture = self
                                .message_interdeparture_time
                                .random_variate(uniform_rng)?;
                            self.state.event_list.push(ScheduledEvent {
                                time: self.state.until_message_interdeparture,
                                event: Event::BeginGeneration,
                            });
                            if let Some(thinning) = self.thinning.clone() {
                                let thinning_threshold =
                                    thinning.evaluate(self.state.global_time)?;
                                let uniform_rn = uniform_rng.rn();
                                if uniform_rn < thinning_threshold {
                                    self.state.event_list.push(ScheduledEvent {
                                        time: self.state.until_message_interdeparture,
                                        event: Event::SendJob,
                                    });
                                }
                            } else {
                                self.state.event_list.push(ScheduledEvent {
                                    time: self.state.until_message_interdeparture,
                                    event: Event::SendJob,
                                });
                            }
                        }
                        Event::SendJob => {
                            self.state.job_counter += 1;
                            let generated = format![
                                "{job_type} {job_id}",
                                job_type = self.ports_out.job,
                                job_id = self.state.job_counter
                            ];
                            outgoing_messages.push(ModelMessage {
                                port_name: self.ports_out.job.clone(),
                                message: generated.clone(),
                            });
                            // Possible metrics updates
                            if self.need_snapshot_metrics() {
                                self.snapshot.last_generation =
                                    Some((generated, self.state.global_time));
                            }
                            if self.need_historical_metrics() {
                                self.history.push(self.snapshot.clone());
                            }
                        }
                    }
                    Ok(Vec::new())
                },
            )
            .find(|result| result.is_err())
            .unwrap_or(Ok(outgoing_messages))
    }

    fn time_advance(&mut self, time_delta: f64) {
        self.state
            .event_list
            .iter_mut()
            .for_each(|scheduled_event| {
                scheduled_event.time -= time_delta;
            });
        self.state.global_time += time_delta;
    }

    fn until_next_event(&self) -> f64 {
        self.state
            .event_list
            .iter()
            .fold(INFINITY, |until_next_event, event| {
                f64::min(until_next_event, event.time)
            })
    }
}