1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//! ECDSA provider for the `secp256k1` crate (a.k.a. secp256k1-rs)

#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/tendermint/signatory/develop/img/signatory-rustacean.png",
    html_root_url = "https://docs.rs/signatory-secp256k1/0.14.0"
)]

use secp256k1::{self, Secp256k1, SignOnly, VerifyOnly};
use signatory::{
    ecdsa::curve::secp256k1::{Asn1Signature, FixedSignature, PublicKey, SecretKey},
    public_key::PublicKeyed,
    sha2::Sha256,
    signature::{digest::Digest, DigestSigner, DigestVerifier, Error, Signature, Signer, Verifier},
};

/// ECDSA signature provider for the secp256k1 crate
#[derive(Signer)]
#[digest(Sha256)]
pub struct EcdsaSigner {
    /// ECDSA secret key
    secret_key: secp256k1::SecretKey,

    /// secp256k1 engine
    engine: Secp256k1<SignOnly>,
}

impl<'a> From<&'a SecretKey> for EcdsaSigner {
    /// Create a new secp256k1 signer from the given `SecretKey`
    fn from(secret_key: &'a SecretKey) -> EcdsaSigner {
        let secret_key = secp256k1::SecretKey::from_slice(secret_key.as_secret_slice()).unwrap();
        let engine = Secp256k1::signing_only();
        EcdsaSigner { secret_key, engine }
    }
}

impl PublicKeyed<PublicKey> for EcdsaSigner {
    /// Return the public key that corresponds to the private key for this signer
    fn public_key(&self) -> Result<PublicKey, Error> {
        let public_key = secp256k1::PublicKey::from_secret_key(&self.engine, &self.secret_key);
        PublicKey::from_bytes(&public_key.serialize()[..]).ok_or_else(Error::new)
    }
}

impl DigestSigner<Sha256, Asn1Signature> for EcdsaSigner {
    /// Compute an ASN.1 DER-encoded signature of the given 32-byte SHA-256 digest
    fn try_sign_digest(&self, digest: Sha256) -> Result<Asn1Signature, Error> {
        Ok(Asn1Signature::from_bytes(self.raw_sign_digest(digest)?.serialize_der()).unwrap())
    }
}

impl DigestSigner<Sha256, FixedSignature> for EcdsaSigner {
    /// Compute a compact, fixed-sized signature of the given 32-byte SHA-256 digest
    fn try_sign_digest(&self, digest: Sha256) -> Result<FixedSignature, Error> {
        Ok(
            FixedSignature::from_bytes(&self.raw_sign_digest(digest)?.serialize_compact()[..])
                .unwrap(),
        )
    }
}

impl EcdsaSigner {
    /// Sign a digest and produce a `secp256k1::Signature`
    fn raw_sign_digest(&self, digest: Sha256) -> Result<secp256k1::Signature, Error> {
        let msg = secp256k1::Message::from_slice(digest.result().as_slice())
            .map_err(Error::from_cause)?;

        Ok(self.engine.sign(&msg, &self.secret_key))
    }
}

/// ECDSA verifier provider for the secp256k1 crate
#[derive(Clone, Debug, Eq, PartialEq, Verifier)]
#[digest(Sha256)]
pub struct EcdsaVerifier {
    /// ECDSA public key
    public_key: secp256k1::PublicKey,

    /// ECDSA engine
    engine: Secp256k1<VerifyOnly>,
}

impl<'a> From<&'a PublicKey> for EcdsaVerifier {
    fn from(public_key: &'a PublicKey) -> Self {
        let public_key = secp256k1::PublicKey::from_slice(public_key.as_bytes()).unwrap();
        let engine = Secp256k1::verification_only();
        EcdsaVerifier { public_key, engine }
    }
}

impl DigestVerifier<Sha256, Asn1Signature> for EcdsaVerifier {
    fn verify_digest(&self, digest: Sha256, signature: &Asn1Signature) -> Result<(), Error> {
        self.raw_verify_digest(
            digest,
            secp256k1::Signature::from_der(signature.as_slice()).map_err(Error::from_cause)?,
        )
    }
}

impl DigestVerifier<Sha256, FixedSignature> for EcdsaVerifier {
    fn verify_digest(&self, digest: Sha256, signature: &FixedSignature) -> Result<(), Error> {
        self.raw_verify_digest(
            digest,
            secp256k1::Signature::from_compact(signature.as_slice()).map_err(Error::from_cause)?,
        )
    }
}

impl EcdsaVerifier {
    /// Verify a digest against a `secp256k1::Signature`
    fn raw_verify_digest(&self, digest: Sha256, sig: secp256k1::Signature) -> Result<(), Error> {
        let msg = secp256k1::Message::from_slice(digest.result().as_slice())
            .map_err(Error::from_cause)?;

        self.engine
            .verify(&msg, &sig, &self.public_key)
            .map_err(Error::from_cause)
    }
}

// TODO: test against actual test vectors, rather than just checking if signatures roundtrip
#[cfg(test)]
mod tests {
    use super::{EcdsaSigner, EcdsaVerifier};
    use signatory::{
        self,
        ecdsa::curve::secp256k1::{
            Asn1Signature, FixedSignature, PublicKey, SecretKey, SHA256_FIXED_SIZE_TEST_VECTORS,
        },
        public_key::PublicKeyed,
        signature::{Signature, Signer, Verifier},
    };

    #[test]
    pub fn asn1_signature_roundtrip() {
        let vector = &SHA256_FIXED_SIZE_TEST_VECTORS[0];
        let signer = EcdsaSigner::from(&SecretKey::from_bytes(vector.sk).unwrap());

        let signature: Asn1Signature = signer.sign(vector.msg);

        let verifier = EcdsaVerifier::from(&signer.public_key().unwrap());
        assert!(verifier.verify(vector.msg, &signature).is_ok());
    }

    #[test]
    pub fn rejects_tweaked_asn1_signature() {
        let vector = &SHA256_FIXED_SIZE_TEST_VECTORS[0];
        let signer = EcdsaSigner::from(&SecretKey::from_bytes(vector.sk).unwrap());

        let signature: Asn1Signature = signer.sign(vector.msg);
        let mut tweaked_signature = signature.into_vec();
        *tweaked_signature.iter_mut().last().unwrap() ^= 42;

        let verifier = EcdsaVerifier::from(&signer.public_key().unwrap());
        let result = verifier.verify(
            vector.msg,
            &Asn1Signature::from_bytes(tweaked_signature).unwrap(),
        );

        assert!(
            result.is_err(),
            "expected bad signature to cause validation error!"
        );
    }

    #[test]
    pub fn fixed_signature_vectors() {
        for vector in SHA256_FIXED_SIZE_TEST_VECTORS {
            let signer = EcdsaSigner::from(&SecretKey::from_bytes(vector.sk).unwrap());
            let public_key = PublicKey::from_bytes(vector.pk).unwrap();
            assert_eq!(signer.public_key().unwrap(), public_key);

            let signature: FixedSignature = signer.sign(vector.msg);
            assert_eq!(signature.as_ref(), vector.sig);

            EcdsaVerifier::from(&public_key)
                .verify(vector.msg, &signature)
                .unwrap();
        }
    }

    #[test]
    pub fn rejects_tweaked_fixed_signature() {
        let vector = &SHA256_FIXED_SIZE_TEST_VECTORS[0];
        let signer = EcdsaSigner::from(&SecretKey::from_bytes(vector.sk).unwrap());

        let signature: FixedSignature = signer.sign(vector.msg);
        let mut tweaked_signature = signature.into_vec();
        *tweaked_signature.iter_mut().last().unwrap() ^= 42;

        let verifier = EcdsaVerifier::from(&signer.public_key().unwrap());
        let result = verifier.verify(
            vector.msg,
            &FixedSignature::from_bytes(tweaked_signature).unwrap(),
        );

        assert!(
            result.is_err(),
            "expected bad signature to cause validation error!"
        );
    }
}