1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! Delay filters.

use std::fmt;

use num_traits::Num;

use signalo_traits::Filter;
use signalo_traits::{FromGuts, Guts, IntoGuts, Reset, State as StateTrait, StateMut};

use crate::circular_buffer::CircularBuffer;

/// The delay filter's state.
#[derive(Clone)]
pub struct State<T, const N: usize> {
    /// The current taps buffer.
    pub taps: CircularBuffer<T, N>,
}

impl<T, const N: usize> fmt::Debug for State<T, N>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("State").field("taps", &self.taps).finish()
    }
}

/// A delay filter producing the moving median over a given signal.
#[derive(Clone)]
pub struct Delay<T, const N: usize> {
    state: State<T, N>,
}

impl<T, const N: usize> Default for Delay<T, N> {
    fn default() -> Self {
        let state = {
            let taps = CircularBuffer::default();
            State { taps }
        };
        Self { state }
    }
}

impl<T, const N: usize> fmt::Debug for Delay<T, N>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Delay").field("state", &self.state).finish()
    }
}

impl<T, const N: usize> StateTrait for Delay<T, N> {
    type State = State<T, N>;
}

impl<T, const N: usize> StateMut for Delay<T, N> {
    unsafe fn state_mut(&mut self) -> &mut Self::State {
        &mut self.state
    }
}

impl<T, const N: usize> Guts for Delay<T, N> {
    type Guts = State<T, N>;
}

impl<T, const N: usize> FromGuts for Delay<T, N> {
    fn from_guts(guts: Self::Guts) -> Self {
        let state = guts;
        Self { state }
    }
}

impl<T, const N: usize> IntoGuts for Delay<T, N> {
    fn into_guts(self) -> Self::Guts {
        self.state
    }
}

impl<T, const N: usize> Reset for Delay<T, N> {
    fn reset(self) -> Self {
        Self::default()
    }
}

impl<T, const N: usize> Filter<T> for Delay<T, N>
where
    T: Clone + Num,
{
    type Output = T;

    fn filter(&mut self, input: T) -> Self::Output {
        loop {
            if let Some(delayed) = self.state.taps.push_back(input.clone()) {
                return delayed;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[allow(clippy::wildcard_imports)]

    fn get_input() -> Vec<f32> {
        vec![
            0.0, 1.0, 7.0, 2.0, 5.0, 8.0, 16.0, 3.0, 19.0, 6.0, 14.0, 9.0, 9.0, 17.0, 17.0, 4.0,
            12.0, 20.0, 20.0, 7.0, 7.0, 15.0, 15.0, 10.0, 23.0, 10.0, 111.0, 18.0, 18.0, 18.0,
            106.0, 5.0, 26.0, 13.0, 13.0, 21.0, 21.0, 21.0, 34.0, 8.0, 109.0, 8.0, 29.0, 16.0,
            16.0, 16.0, 104.0, 11.0, 24.0, 24.0,
        ]
    }

    fn get_output() -> Vec<f32> {
        vec![
            0.0, 0.0, 0.0, 1.0, 7.0, 2.0, 5.0, 8.0, 16.0, 3.0, 19.0, 6.0, 14.0, 9.0, 9.0, 17.0,
            17.0, 4.0, 12.0, 20.0, 20.0, 7.0, 7.0, 15.0, 15.0, 10.0, 23.0, 10.0, 111.0, 18.0, 18.0,
            18.0, 106.0, 5.0, 26.0, 13.0, 13.0, 21.0, 21.0, 21.0, 34.0, 8.0, 109.0, 8.0, 29.0,
            16.0, 16.0, 16.0, 104.0, 11.0,
        ]
    }

    #[test]
    fn test() {
        let filter: Delay<f32, 2> = Delay::default();
        // Sequence: https://en.wikipedia.org/wiki/Collatz_conjecture
        let input = get_input();
        let output: Vec<_> = input
            .iter()
            .scan(filter, |filter, &input| Some(filter.filter(input)))
            .collect();
        assert_nearly_eq!(output, get_output(), 0.001);
    }
}