1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#![warn(missing_docs)]
#![allow(clippy::needless_doctest_main)]

//! Format value with units according to SI ([système international d'unités](https://en.wikipedia.org/wiki/International_System_of_Units)).
//!
//! Version requirement: _rustc 1.50+_
//!
//! ```toml
//! [dependencies]
//! si-scale = "0.2"
//! ```
//!
//! ## Overview
//!
//! This crate formats numbers using the
//! [SI Scales](https://en.wikipedia.org/wiki/International_System_of_Units):
//! from 1 y (yocto, i.e. 1e-24) to 1 Y (Yotta, i.e. 1e24).
//!
//! It has the same purpose as the great
//! [human-repr](https://docs.rs/human-repr), but strikes a different balance:
//!
//! - this crate yields more terse code at the call sites
//! - it gives you more control over the output. As shown later in this page,
//! you can extend it pretty easily to handle throughput, etc. (seriously, see
//! below)
//! - but it only operates on numbers, so it does not prevent you from using a
//! function to print meters on a duration value (which human-repr does
//! brilliantly).
//!
//! ## Getting started
//!
//! To use this crate, either use one of the few pre-defined helper functions,
//! or build your own.
//!
//! Basic example:
//!
//! ```rust
//! use si_scale::helpers::{seconds, seconds3};
//!
//! let actual = format!("{}", seconds(1.3e-5));
//! let expected = "13 µs";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("{}", seconds3(1.3e-5));
//! let expected = "13.000 µs";
//! assert_eq!(actual, expected);
//! ```
//!
//! ## Pre-defined helper functions
//!
//! The helper functions use the following naming convention:
//!
//! - the name indicates the units to use
//! - a number suffix indicates the decimal digits for floating points
//! - a `_` suffix indicates the digits use "thousands grouping"
//!
//! But that's up to you to depart from that when writing your own functions.
//!
//! Currently the helper functions are:
//!
//! | helper fn    | input                  | output                 |
//! | ---          | ---                    | ---                    |
//! | `number_()`  | `1.234567`, `1515`     | `1.234_567`, `1_515`   |
//! | ---          | ---                    | ---                    |
//! | `seconds()`  | `1.234567e-6`, `16e-3` | `1.234567 µs`, `16 ms` |
//! | `seconds3()` | `1.234567e-6`, `16e-3` | `1.235 µs`, `16.000 ms`|
//! | ---          | ---                    | ---                    |
//! | `bytes()`    | `1234567`              | `1.234567 MB`          |
//! | `bytes_()`   | `1234567`              | `1_234_567 B`          |
//! | `bytes1()`   | `2.3 * 1e12`           | `2.3 TB`               |
//! | `bytes2()`   | `2.3 * 1e12`           | `2.30 TB`              |
//! | ---          | ---                    | ---                    |
//! | `bibytes()`  | `1024 * 1024 * 1.25`   | `1.25 MiB`             |
//! | `bibytes1()` | `1024 * 1024 * 1.25`   | `1.3 MiB`              |
//! | `bibytes2()` | `1024 * 1024 * 1.25`   | `1.25 MiB`             |
//!
//! ## Custom helper functions - BYOU (bring your own unit)
//!
//! To define your own format function, use the
//! [`scale_fn!()`](`crate::scale_fn!()`) macro. All pre-defined helper
//! functions from this crate are defined using this macro.
//!
//! | helper fn    | mantissa  | prefix constraint | base  | groupings | input                  | output                 |
//! | ---          | --        | ---               | ---   | ---       | ---                    | ---                    |
//! | `number_()`  | `"{}"`    | `UnitOnly`        | B1000 | `_`       | `1.234567`, `1515`     | `1.234_567`, `1_515`   |
//! | ---          | --        | ---               | ---   | ---       | ---                    | ---                    |
//! | `seconds()`  | `"{}"`    | `UnitAndBelow`    | B1000 | none      | `1.234567e-6`, `16e-3` | `1.234567 µs`, `16 ms` |
//! | `seconds3()` | `"{:.3}"` | `UnitAndBelow`    | B1000 | none      | `1.234567e-6`, `16e-3` | `1.235 µs`, `16.000 ms`|
//! | ---          | --        | ---               | ---   | ---       | ---                    | ---                    |
//! | `bytes()`    | `"{}"`    | `UnitAndAbove`    | B1000 | none      | `1234567`              | `1.234567 MB`          |
//! | `bytes_()`   | `"{}"`    | `UnitOnly`        | B1000 | `_`       | `1234567`              | `1_234_567 B`          |
//! | `bytes1()`   | `"{:.1}"` | `UnitAndAbove`    | B1000 | none      | `2.3 * 1e12`           | `2.3 TB`               |
//! | `bytes2()`   | `"{:.2}"` | `UnitAndAbove`    | B1000 | none      | `2.3 * 1e12`           | `2.30 TB`              |
//! | ---          | --        | ---               | ---   | ---       | ---                    | ---                    |
//! | `bibytes()`  | `"{}"`    | `UnitAndAbove`    | B1024 | none      | `1024 * 1024 * 1.25`   | `1.25 MiB`             |
//! | `bibytes1()` | `"{:.1}"` | `UnitAndAbove`    | B1024 | none      | `1024 * 1024 * 1.25`   | `1.3 MiB`              |
//! | `bibytes2()` | `"{:.2}"` | `UnitAndAbove`    | B1024 | none      | `1024 * 1024 * 1.25`   | `1.25 MiB`             |
//!
//! The additional table columns show the underlying controls.
//!
//! ### The "mantissa" column
//!
//! It is a format string which only acts on the mantissa after scaling. For
//! instance, `"{}"` will display the value with all its digits or no digits if
//! it is round, and `"{:.1}"` for instance will always display one decimal.
//!
//! ### The "prefix constraint" column
//!
//! In a nutshell, this allows values to be represented in unsurprising scales:
//! for instance, you would never write `1.2 ksec`, but always `1200 sec` or
//! `1.2e3 sec`. In the same vein, you would never write `2 mB`, but always
//! `0.002 B` or `2e-3 B`.
//!
//! So, here the term "unit" refers to the unit scale (`1`), and has nothing to
//! do with units of measurements. It constrains the possible scales for a
//! value:
//!
//! - `UnitOnly` means the provided value won't be scaled: if you provide a
//!   value larger than 1000, say 1234, it will be printed as 1234.
//! - `UnitAndAbove` means the provided value can only use higher scales, for
//!   instance `16 GB` but never `4.3 µB`.
//! - `UnitAndBelow` means the provided value can only use lower scales, for
//!   instance `1.3 µsec` but not `16 Gsec`.
//!
//! ### The "base" column
//!
//! Base B1000 means 1k = 1000, the base B1024 means 1k = 1024. This is defined
//! in an [IEC document](https://www.iec.ch/prefixes-binary-multiples). If you
//! set the base to `B1024`, the mantissa will be scaled appropriately, but in
//! most cases, you will be using `B1000`.
//!
//! ### The "groupings" column
//!
//! Groupings refer to "thousands groupings"; the provided char will be
//! used (for instance 1234 is displayed as 1\_234), if none, the value is
//! displayed 1234.
//!
//! ### Example - how to define a helper for kibits/s
//!
//! For instance, let's define a formatting function for bits per sec which
//! prints the mantissa with 2 decimals, and also uses base 1024 (where 1 ki =
//! 1024). Note that although we define the function in a separate module,
//! this is not a requirement.
//!
//! ```rust
//! mod unit_fmt {
//!     use si_scale::scale_fn;
//!     use si_scale::prelude::Value;
//!
//!     // defines the `bits_per_sec()` function
//!     scale_fn!(bits_per_sec,
//!               base: B1024,
//!               constraint: UnitAndAbove,
//!               mantissa_fmt: "{:.2}",
//!               groupings: '_',
//!               unit: "bit/s",
//!               doc: "Return a string with the value and its si-scaled unit of bit/s.");
//! }
//!
//! use unit_fmt::bits_per_sec;
//!
//! fn main() {
//!     let x = 2.1 * 1024 as f32;
//!     let actual = format!("throughput: {:>15}", bits_per_sec(x));
//!     let expected = "throughput:    2.10 kibit/s";
//!     assert_eq!(actual, expected);
//!
//!     let x = 2;
//!     let actual = format!("throughput: {}", bits_per_sec(x));
//!     let expected = "throughput: 2.00 bit/s";
//!     assert_eq!(actual, expected);
//! }
//!
//! ```
//!
//! You can omit the `groupings` argument of the macro to not separate
//! thousands.
//!
//! ## SI Scales - Developer doc
//!
//! With base = 1000, 1k = 1000, 1M = 1\_000\_000, 1m = 0.001, 1µ = 0.000\_001,
//! etc.
//!
//! | min (incl.) | max (excl.)      | magnitude | prefix          |
//! | ---         | ---              | ---       | ----            |
//! | ..          | ..               | -24       | `Prefix::Yocto` |
//! | ..          | ..               | -21       | `Prefix::Zepto` |
//! | ..          | ..               | -18       | `Prefix::Atto`  |
//! | ..          | ..               | -15       | `Prefix::Femto` |
//! | ..          | ..               | -12       | `Prefix::Pico`  |
//! | ..          | ..               | -9        | `Prefix::Nano`  |
//! | 0.000\_001  | 0.001            | -6        | `Prefix::Micro` |
//! | 0.001       | 1                | -3        | `Prefix::Milli` |
//! | 1           | 1_000            | 0         | `Prefix::Unit`  |
//! | 1000        | 1\_000\_000      | 3         | `Prefix::Kilo`  |
//! | 1\_000\_000 | 1\_000\_000\_000 | 6         | `Prefix::Mega`  |
//! | ..          | ..               | 9         | `Prefix::Giga`  |
//! | ..          | ..               | 12        | `Prefix::Tera`  |
//! | ..          | ..               | 15        | `Prefix::Peta`  |
//! | ..          | ..               | 18        | `Prefix::Exa`   |
//! | ..          | ..               | 21        | `Prefix::Zetta` |
//! | ..          | ..               | 24        | `Prefix::Yotta` |
//!
//! The base is usually 1000, but can also be 1024 (bibytes).
//!
//! With base = 1024, 1ki = 1024, 1Mi = 1024 * 1024, etc.
//!
//! ### API overview
//!
//! The central representation is the [`Value`](`crate::value::Value`) type,
//! which holds
//!
//! - the mantissa,
//! - the SI unit prefix (such as "kilo", "Mega", etc),
//! - and the base which represents the cases where "1 k" means 1000 (most
//! common) and the cases where "1 k" means 1024 (for kiB, MiB, etc).
//!
//! This crate provides 2 APIs: a low-level API, and a high-level API for
//! convenience.
//!
//! For the low-level API, the typical use case is
//!
//! - first parse a number into a [`Value`](`crate::value::Value`). For doing
//! this, you have to specify the base, and maybe some constraint on the SI
//! scales. See [`Value::new()`](`crate::value::Value::new()`) and
//! [`Value::new_with()`](`crate::value::Value::new_with()`)
//!
//! - then display the `Value` either by yourself formatting the mantissa
//!   and prefix (implements the `fmt::Display` trait), or using the provided
//!   Formatter.
//!
//! For the high-level API, the typical use cases are
//!
//! 1. parse and display a number using the provided functions such as
//!    `bibytes()`, `bytes()` or `seconds()`, they will choose for each number
//!    the most appropriate SI scale.
//!
//! 2. In case you want the same control granularity as the low-level API
//!    (e.g. constraining the scale in some way, using some base, specific
//!    mantissa formatting), then you can build a custom function using the
//!    provided macro `scale_fn!()`. The existing functions such as
//!    `bibytes()`, `bytes()`, `seconds()` are all built using this same
//!    macro.
//!
//! ### The high-level API
//!
//! The `seconds3()` function parses a number into a `Value` and displays it
//! using 3 decimals and the appropriate scale for seconds (`UnitAndBelow`),
//! so that non-sensical scales such as kilo-seconds can't be output. The
//! `seconds()` function does the same but formats the mantissa with the
//! default `"{}"`, so no decimals are printed for integer mantissa.
//!
//! ```
//! use si_scale::helpers::{seconds, seconds3};
//!
//! let actual = format!("result is {:>15}", seconds(1234.5678));
//! let expected = "result is     1234.5678 s";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {:>10}", seconds3(12.3e-7));
//! let expected = "result is   1.230 µs";
//! assert_eq!(actual, expected);
//! ```
//!
//! The `bytes()` function parses a number into a `Value` _using base 1000_
//! and displays it using 1 decimal and the appropriate scale for bytes
//! (`UnitAndAbove`), so that non-sensical scales such as milli-bytes may not
//! appear.
//!
//! ```
//! use si_scale::helpers::{bytes, bytes1};
//!
//! let actual = format!("result is {}", bytes1(12_345_678));
//! let expected = "result is 12.3 MB";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {:>10}", bytes(16));
//! let expected = "result is       16 B";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {}", bytes(0.12));
//! let expected = "result is 0.12 B";
//! assert_eq!(actual, expected);
//! ```
//!
//! The `bibytes1()` function parses a number into a `Value` _using base 1024_
//! and displays it using 1 decimal and the appropriate scale for bytes
//! (`UnitAndAbove`), so that non-sensical scales such as milli-bytes may not
//! appear.
//!
//! ```
//! use si_scale::helpers::{bibytes, bibytes1};
//!
//! let actual = format!("result is {}", bibytes1(12_345_678));
//! let expected = "result is 11.8 MiB";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {}", bibytes(16 * 1024));
//! let expected = "result is 16 kiB";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {:>10}", bibytes1(16));
//! let expected = "result is     16.0 B";
//! assert_eq!(actual, expected);
//!
//! let actual = format!("result is {}", bibytes(0.12));
//! let expected = "result is 0.12 B";
//! assert_eq!(actual, expected);
//! ```
//!
//! ### The low-level API
//!
//! #### Creating a `Value` with `Value::new()`
//!
//! The low-level function [`Value::new()`](`crate::value::Value::new()`)
//! converts any number convertible to f64 into a `Value` using base 1000. The
//! `Value` struct implements `From` for common numbers and delegates to
//! `Value::new()`, so they are equivalent in practice. Here are a few
//! examples.
//!
//! ```rust
//! use std::convert::From;
//! use si_scale::prelude::*;
//!
//! let actual = Value::from(0.123);
//! let expected = Value {
//!     mantissa: 123f64,
//!     prefix: Prefix::Milli,
//!     base: Base::B1000,
//! };
//! assert_eq!(actual, expected);
//! assert_eq!(Value::new(0.123), expected);
//!
//! let actual: Value = 0.123.into();
//! assert_eq!(actual, expected);
//!
//! let actual: Value = 1300i32.into();
//! let expected = Value {
//!     mantissa: 1.3f64,
//!     prefix: Prefix::Kilo,
//!     base: Base::B1000,
//! };
//! assert_eq!(actual, expected);
//!
//! let actual: Vec<Value> = vec![0.123f64, -1.5e28]
//!     .iter().map(|n| n.into()).collect();
//! let expected = vec![
//!     Value {
//!         mantissa: 123f64,
//!         prefix: Prefix::Milli,
//!         base: Base::B1000,
//!     },
//!     Value {
//!         mantissa: -1.5e4f64,
//!         prefix: Prefix::Yotta,
//!         base: Base::B1000,
//!     },
//! ];
//! assert_eq!(actual, expected);
//! ```
//!
//! As you can see in the last example, values which scale are outside of the
//! SI prefixes are represented using the closest SI prefix.
//!
//! #### Creating a `Value` with `Value::new_with()`
//!
//! The low-level [`Value::new_with()`](`crate::value::Value::new_with()`)
//! operates similarly to [`Value::new()`](`crate::value::Value::new()`) but
//! also expects a base and a constraint on the scales you want to use. In
//! comparison with the simple `Value::new()`, this allows base 1024 scaling
//! (for kiB, MiB, etc) and preventing upper scales for seconds or lower
//! scales for integral units such as bytes (e.g. avoid writing 1300 sec as
//! 1.3 ks or 0.415 B as 415 mB).
//!
//! ```rust
//! use si_scale::prelude::*;
//!
//! // Assume this is seconds, no kilo-seconds make sense.
//! let actual = Value::new_with(1234, Base::B1000, Constraint::UnitAndBelow);
//! let expected = Value {
//!     mantissa: 1234f64,
//!     prefix: Prefix::Unit,
//!     base: Base::B1000,
//! };
//! assert_eq!(actual, expected);
//! ```
//!
//! Don't worry yet about the verbosity, the following parser helps with this.
//!
//! #### Formatting values
//!
//! In this example, the number `x` is converted into a value and displayed
//! using the most appropriate SI prefix. The user chose to constrain the
//! prefix to be anything lower than `Unit` (1) because kilo-seconds make
//! no sense.
//!
//! ```
//! use si_scale::format_value;
//! # fn main() {
//! use si_scale::{value::Value, base::Base, prefix::Constraint};
//!
//! let x = 1234.5678;
//! let v = Value::new_with(x, Base::B1000, Constraint::UnitAndBelow);
//! let unit = "s";
//!
//! let actual = format!(
//!     "result is {}{u}",
//!     format_value!(v, "{:.5}", groupings: '_'),
//!     u = unit
//! );
//! let expected = "result is 1_234.567_80 s";
//! assert_eq!(actual, expected);
//! # }
//! ```
//!
//! ## Run code-coverage
//!
//! Install the llvm-tools-preview component and grcov
//!
//! ```sh
//! rustup component add llvm-tools-preview
//! cargo install grcov
//! ```
//!
//! Install nightly
//!
//! ```sh
//! rustup toolchain install nightly
//! ```
//!
//! The following make invocation will switch to nigthly run the tests using
//! Cargo, and output coverage HTML report in `./coverage/`
//!
//! ```sh
//! make coverage
//! ```
//!
//! The coverage report is located in `./coverage/index.html`
//!
//! ## License
//!
//! Licensed under either of
//!
//! - [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
//! - [MIT license](http://opensource.org/licenses/MIT)
//!
//! at your option.
//!
//! ### Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted
//! for inclusion in the work by you, as defined in the Apache-2.0 license, shall
//! be dual licensed as above, without any additional terms or conditions.

/// Error type used by this crate.
#[derive(Debug, PartialEq, Eq)]
pub enum SIUnitsError {
    /// Indicates an error occurred when parsing the exponent.
    ExponentParsing(String),
}

/// Result type used by this crate.
pub type Result<T> = std::result::Result<T, SIUnitsError>;

pub mod base;
pub mod format;
pub mod helpers;
pub mod prefix;
pub mod value;

/// Holds first-class citizens of this crate, for convenience.
pub mod prelude {
    pub use crate::base::Base;
    pub use crate::prefix::{Constraint, Prefix};
    pub use crate::value::Value;
}