1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
use crate::current::get_name_for_task;
use crate::runtime::execution::{ExecutionState, TASK_ID_TO_TAGS};
use crate::runtime::storage::{AlreadyDestructedError, StorageKey, StorageMap};
use crate::runtime::task::clock::VectorClock;
use crate::runtime::task::labels::Labels;
use crate::runtime::thread;
use crate::runtime::thread::continuation::{ContinuationPool, PooledContinuation};
use crate::thread::LocalKey;
use bitvec::prelude::*;
use std::any::Any;
use std::cell::RefCell;
use std::fmt::Debug;
use std::future::Future;
use std::rc::Rc;
use std::sync::Arc;
use std::task::{Context, Waker};
use tracing::{error_span, event, field, Level, Span};

pub(crate) mod clock;
pub(crate) mod labels;
pub(crate) mod waker;
use waker::make_waker;

// A note on terminology: we have competing notions of threads floating around. Here's the
// convention for disambiguating them:
// * A "thread" is a user-level unit of concurrency. User code creates threads, passes data
//   between them, etc.
// * A "future" is another user-level unit of concurrency, corresponding directly to Rust's notion
//   in std::future::Future. A future has a single method `poll` that can be used to resume
//   executing its computation. Both futures and threads are implemented in Task,
//   which wraps a continuation that is resumed when the task is scheduled.
// * A "task" is the Shuttle executor's reflection of a user-level unit of concurrency. Each task
//   has a corresponding continuation, which is the user-level code it runs, as well as a state like
//   "blocked", "runnable", etc. Scheduling algorithms take as input the state of all tasks
//   and decide which task should execute next. A context switch is when one task stops executing
//   and another begins.
// * A "continuation" is a low-level implementation of green threading for concurrency. Each
//   Task contains a corresponding continuation. When the Shuttle executor context switches to a
//   Task, the executor resumes that task's continuation until it yields, which happens when its
//   thread decides it might want to context switch (e.g., because it's blocked on a lock).

pub(crate) const DEFAULT_INLINE_TASKS: usize = 16;

/// A reserved label that is used to assign readable names to tasks for debugging.
///
/// To make debugging easier, if a task is assigned a `TaskName(s)` Label,
/// Shuttle will display the String `s` in addition to the `TaskId` in debug output.
#[derive(Clone, PartialEq, Eq)]
pub struct TaskName(String);

impl From<String> for TaskName {
    fn from(s: String) -> Self {
        Self(s)
    }
}

impl From<&str> for TaskName {
    fn from(s: &str) -> Self {
        Self(String::from(s))
    }
}

impl std::fmt::Debug for TaskName {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl From<TaskName> for String {
    fn from(task_name: TaskName) -> Self {
        task_name.0
    }
}

impl<'a> From<&'a TaskName> for &'a String {
    fn from(task_name: &'a TaskName) -> Self {
        &task_name.0
    }
}

/// A special label that can be used to set labels for a task when it is spawned.
///
/// By default, when a task or thread T is spawned, it inherits all labels from its parent.
/// It's often useful to modify or add new Labels to T.  One approach is to put label changes
/// at the beginning of the closure that is passed to `spawn`, but this approach has the drawback
/// that the changes are applied only when T is first selected for execution, and the closure
/// is invoked.  To overcome this drawback, we introduce the `ChildLabelFn` label.  If a parent
/// task or thread has a `ChildLabelFn` set when it spawns a new child task or thread, the
/// child's label set at spawn time will be modified by applying the function inside the `ChildLabelFn`.
///
/// # Example
/// The following example shows how a `ChildLabelFn` can be used to set up names for the next child(ren)
/// that will be spawned by a parent task.
/// ```
/// # use shuttle::current::{me, set_label_for_task, get_name_for_task, ChildLabelFn, TaskName};
/// # use std::sync::Arc;
/// // In the parent, set up a `ChildLabelFn` that assigns a name to the child task
/// shuttle::check_dfs(|| {
///   set_label_for_task(me(), ChildLabelFn(Arc::new(|_task_id, labels| { labels.insert(TaskName::from("ChildTask")); })));
///   shuttle::thread::spawn(|| {
///     assert_eq!(get_name_for_task(me()).unwrap(), TaskName::from("ChildTask")); // child task already has the name
///     // ... rest of child
///   }).join().unwrap();
/// }, None);
/// ```
#[derive(Clone)]
#[allow(clippy::type_complexity)]
pub struct ChildLabelFn(pub Arc<dyn Fn(TaskId, &mut Labels) + 'static>);

impl Debug for ChildLabelFn {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "ChildLabelFn")
    }
}

/// A `Tag` is an optional piece of metadata associated with a task (a thread or spawned future) to
/// aid debugging.
///
/// It is automatically implemented for types which implement `Taggable` and are `Any`.
///
/// When set, the tag will be included in the [Debug] representation of [TaskId]s, which can help
/// identify tasks in failing Shuttle tests. A task's [Tag] can be set with the
/// [set_tag_for_current_task](crate::current::set_tag_for_current_task) function. Newly spawned
/// threads and futures inherit the tag of their parent at spawn time.
#[deprecated]
#[allow(deprecated)]
pub trait Tag: Taggable {
    /// Return the tag as `Any`, typically so that it can be downcast to a known concrete type
    fn as_any(&self) -> &dyn Any;
}
/// `Taggable` is a marker trait which types implementing `Tag` have to implement.
/// It exists since we both want to provide a blanket implementation of `as_any`, and have users
/// opt in to a type being able to be used as a tag. If we did not have this trait, then `Tag`
/// would be automatically implemented for most types (as most types are `Debug + Any`), which
/// opens up for accidentally using a type which was not intended to be used as a tag as a tag.
#[deprecated]
pub trait Taggable: Debug {}

#[allow(deprecated)]
impl<T> Tag for T
where
    T: Taggable + Any,
{
    fn as_any(&self) -> &dyn Any {
        self
    }
}

/// A `Task` represents a user-level unit of concurrency. Each task has an `id` that is unique within
/// the execution, and a `state` reflecting whether the task is runnable (enabled) or not.
#[derive(Debug)]
pub(crate) struct Task {
    pub(super) id: TaskId,
    pub(super) state: TaskState,
    pub(super) detached: bool,
    park_state: ParkState,

    pub(super) continuation: Rc<RefCell<PooledContinuation>>,

    pub(crate) clock: VectorClock,

    waiter: Option<TaskId>,

    waker: Waker,
    // Remember whether the waker was invoked while we were running
    woken: bool,

    name: Option<String>,

    local_storage: StorageMap,

    // The `Span` which looks like this: step{task=task_id}, or, if step count recording is enabled, like this:
    // step{task=task_id i=step_count}. Becomes the parent of the spans created by the `Task`.
    pub(super) step_span: Span,

    // The current `Span` "stack" of the `Task`.
    // `Span`s are stored such that the `Task`s current `Span` is at `span_stack[0]`, that `Span`s parent (if it exists)
    // is at `span_stack[1]`, and so on, until `span_stack[span_stack.len()-1]`, which is the "outermost" (left-most when printed)
    // `Span`. This means that `span_stack[span_stack.len()-1]` will usually be the `Span` saying `execution{i=X}`.
    // We `pop` it empty when resuming a `Task`, and `push` + `exit` `tracing::Span::current()`
    // until there is no entered `Span` when we switch out of the `Task`.
    // There are two things to note:
    // 1: We have to own the `Span`s (versus storing `Id`s) for the `Span` to not get dropped while the task is switched out.
    // 2: We have to store the stack of `Span`s in order to return to the correct `Span` once the `Entered<'_>` from an
    //    `instrument`ed future is dropped.
    pub(super) span_stack: Vec<Span>,

    // Arbitrarily settable tag which is inherited from the parent.
    #[allow(deprecated)]
    tag: Option<Arc<dyn Tag>>,
}

#[allow(deprecated)]
impl Task {
    /// Create a task from a continuation
    #[allow(clippy::too_many_arguments)]
    fn new<F>(
        f: F,
        stack_size: usize,
        id: TaskId,
        name: Option<String>,
        clock: VectorClock,
        parent_span_id: Option<tracing::span::Id>,
        schedule_len: usize,
        tag: Option<Arc<dyn Tag>>,
        parent_task_id: Option<TaskId>,
    ) -> Self
    where
        F: FnOnce() + Send + 'static,
    {
        assert!(id.0 < clock.time.len());
        let mut continuation = ContinuationPool::acquire(stack_size);
        continuation.initialize(Box::new(f));
        let waker = make_waker(id);
        let continuation = Rc::new(RefCell::new(continuation));

        let step_span = error_span!(parent: parent_span_id.clone(), "step", task = id.0, i = field::Empty);
        // Note that this is slightly lazy — we are starting storing at the step_span, but could have gotten the
        // full `Span` stack and stored that. It should be fine, but if any issues arise, then full storing should
        // be tried.
        let span_stack = vec![step_span.clone()];

        let mut task = Self {
            id,
            state: TaskState::Runnable,
            continuation,
            clock,
            waiter: None,
            waker,
            woken: false,
            detached: false,
            park_state: ParkState::default(),
            name,
            step_span,
            span_stack,
            local_storage: StorageMap::new(),
            tag: None,
        };

        if let Some(tag) = tag {
            task.set_tag(tag);
        }

        error_span!(parent: parent_span_id, "new_task", parent = ?parent_task_id, i = schedule_len)
            .in_scope(|| event!(Level::INFO, "created task: {:?}", task.id));

        task
    }

    #[allow(clippy::too_many_arguments)]
    pub(crate) fn from_closure<F>(
        f: F,
        stack_size: usize,
        id: TaskId,
        name: Option<String>,
        clock: VectorClock,
        parent_span_id: Option<tracing::span::Id>,
        schedule_len: usize,
        tag: Option<Arc<dyn Tag>>,
        parent_task_id: Option<TaskId>,
    ) -> Self
    where
        F: FnOnce() + Send + 'static,
    {
        Self::new(
            f,
            stack_size,
            id,
            name,
            clock,
            parent_span_id,
            schedule_len,
            tag,
            parent_task_id,
        )
    }

    #[allow(clippy::too_many_arguments)]
    pub(crate) fn from_future<F>(
        future: F,
        stack_size: usize,
        id: TaskId,
        name: Option<String>,
        clock: VectorClock,
        parent_span_id: Option<tracing::span::Id>,
        schedule_len: usize,
        tag: Option<Arc<dyn Tag>>,
        parent_task_id: Option<TaskId>,
    ) -> Self
    where
        F: Future<Output = ()> + Send + 'static,
    {
        let mut future = Box::pin(future);

        Self::new(
            move || {
                let waker = ExecutionState::with(|state| state.current_mut().waker());
                let cx = &mut Context::from_waker(&waker);
                while future.as_mut().poll(cx).is_pending() {
                    ExecutionState::with(|state| state.current_mut().sleep_unless_woken());
                    thread::switch();
                }
            },
            stack_size,
            id,
            name,
            clock,
            parent_span_id,
            schedule_len,
            tag,
            parent_task_id,
        )
    }

    pub(crate) fn id(&self) -> TaskId {
        self.id
    }

    pub(crate) fn runnable(&self) -> bool {
        self.state == TaskState::Runnable
    }

    pub(crate) fn blocked(&self) -> bool {
        matches!(self.state, TaskState::Blocked { .. })
    }

    pub(crate) fn can_spuriously_wakeup(&self) -> bool {
        match self.state {
            TaskState::Blocked { allow_spurious_wakeups } => allow_spurious_wakeups,
            _ => false,
        }
    }

    pub(crate) fn sleeping(&self) -> bool {
        self.state == TaskState::Sleeping
    }

    pub(crate) fn finished(&self) -> bool {
        self.state == TaskState::Finished
    }

    pub(crate) fn detach(&mut self) {
        self.detached = true;
    }

    pub(crate) fn waker(&self) -> Waker {
        self.waker.clone()
    }

    /// Block the current thread. If `allow_spurious_wakeups` is true, then the scheduler is
    /// permitted to spuriously wake up the thread (though it will still not count as a live thread
    /// for deadlock detection purposes for as long as it remains blocked).
    pub(crate) fn block(&mut self, allow_spurious_wakeups: bool) {
        assert!(self.state != TaskState::Finished);
        self.state = TaskState::Blocked { allow_spurious_wakeups };
    }

    pub(crate) fn sleep(&mut self) {
        assert!(self.state != TaskState::Finished);
        self.state = TaskState::Sleeping;
    }

    pub(crate) fn unblock(&mut self) {
        // Note we don't assert the task is blocked here. For example, a task invoking its own waker
        // will not be blocked when this is called.
        assert!(self.state != TaskState::Finished);
        self.state = TaskState::Runnable;

        // When a task gets unblocked, it's definitely no longer blocked in a call to `park`. This
        // is necessary to do here because a parked task could be spuriously woken up outside of the
        // `unpark` path. If it later becomes blocked by something else, we don't want a later
        // `unpark` to be able to unblock the task.
        self.park_state.blocked_in_park = false;
    }

    pub(crate) fn finish(&mut self) {
        assert!(self.state != TaskState::Finished);
        self.state = TaskState::Finished;
    }

    /// Potentially put this task to sleep after it was polled by the executor, unless someone has
    /// called its waker first.
    ///
    /// A synchronous Task should never call this, because we want threads to be enabled-by-default
    /// to avoid bugs where Shuttle incorrectly omits a potential execution.
    pub(crate) fn sleep_unless_woken(&mut self) {
        let was_woken = std::mem::replace(&mut self.woken, false);
        if !was_woken {
            self.sleep();
        }
    }

    /// Remember that our waker has been called, and so we should not block the next time the
    /// executor tries to put us to sleep.
    pub(super) fn wake(&mut self) {
        self.woken = true;
        if self.state == TaskState::Sleeping {
            self.unblock();
        }
    }

    /// Register a waiter for this thread to terminate. Returns a boolean indicating whether the
    /// waiter should block or not. If false, this task has already finished, and so the waiter need
    /// not block.
    pub(crate) fn set_waiter(&mut self, waiter: TaskId) -> bool {
        assert!(
            self.waiter.is_none() || self.waiter == Some(waiter),
            "Task cannot have more than one waiter"
        );
        if self.finished() {
            false
        } else {
            self.waiter = Some(waiter);
            true
        }
    }

    pub(crate) fn take_waiter(&mut self) -> Option<TaskId> {
        self.waiter.take()
    }

    pub(crate) fn name(&self) -> Option<String> {
        self.name.clone()
    }

    /// Retrieve a reference to the given thread-local storage slot.
    ///
    /// Returns Some(Err(_)) if the slot has already been destructed. Returns None if the slot has
    /// not yet been initialized.
    pub(crate) fn local<T: 'static>(&self, key: &'static LocalKey<T>) -> Option<Result<&T, AlreadyDestructedError>> {
        self.local_storage.get(key.into())
    }

    /// Initialize the given thread-local storage slot with a new value.
    ///
    /// Panics if the slot has already been initialized.
    pub(crate) fn init_local<T: 'static>(&mut self, key: &'static LocalKey<T>, value: T) {
        self.local_storage.init(key.into(), value)
    }

    /// Return ownership of the next still-initialized thread-local storage slot, to be used when
    /// running thread-local storage destructors.
    ///
    /// TLS destructors are a little tricky:
    /// 1. Their code can perform synchronization operations (and so require Shuttle to call back
    ///    into ExecutionState), so we can't drop them from within an ExecutionState borrow. Instead
    ///    we move the contents of a slot to the caller to be dropped outside the borrow.
    /// 2. It's valid for destructors to read other TLS slots, although destructor order is
    ///    undefined. This also means it's valid for a destructor to *initialize* another TLS slot.
    ///    To make this work, we run the destructors incrementally, so one destructor can initialize
    ///    another slot that just gets added via `init_local` like normal, and then will be
    ///    available to be popped on a future call to `pop_local`. To prevent an infinite loop, we
    ///    forbid *reinitializing* a TLS slot whose destructor has already run, or is currently
    ///    being run.
    pub(crate) fn pop_local(&mut self) -> Option<Box<dyn Any>> {
        self.local_storage.pop()
    }

    /// Park the task if its park token is unavailable. If the task blocks, then it will be woken up
    /// when the token becomes available or spuriously without consuming the token (see the
    /// documentation for [`std::thread::park`], which says that "it may also return spuriously,
    /// without consuming the token"). Returns true if the execution should switch to a different
    /// task (e.g., if the token was unavailable).
    pub(crate) fn park(&mut self) -> bool {
        assert!(
            !self.park_state.blocked_in_park,
            "task cannot park while already parked"
        );
        assert!(!self.blocked(), "task cannot park while blocked by something else");

        if self.park_state.token_available {
            self.park_state.token_available = false;
            false
        } else {
            self.park_state.blocked_in_park = true;
            self.block(true);
            true
        }
    }

    /// Make the task's park token available, and unblock the task if it was parked.
    pub(crate) fn unpark(&mut self) {
        if self.park_state.blocked_in_park {
            assert!(
                self.blocked() && self.can_spuriously_wakeup(),
                "parked tasks should be blocked"
            );
            assert!(
                !self.park_state.token_available,
                "token shouldn't be available for parked task"
            );

            self.unblock();
        } else {
            // If the thread isn't currently blocked in `park`, then make the token available. If
            // the token already is available, then this does nothing.
            self.park_state.token_available = true;
        }
    }

    pub(crate) fn get_tag(&self) -> Option<Arc<dyn Tag>> {
        self.tag.clone()
    }

    /// Sets the `tag` field of the current task.
    /// Returns the `tag` which was there previously.
    pub(crate) fn set_tag(&mut self, tag: Arc<dyn Tag>) -> Option<Arc<dyn Tag>> {
        TASK_ID_TO_TAGS.with(|cell| cell.borrow_mut().insert(self.id(), tag.clone()));
        std::mem::replace(&mut self.tag, Some(tag))
    }
}

#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub(crate) enum TaskState {
    /// Available to be scheduled
    Runnable,
    /// Blocked in a synchronization operation
    Blocked { allow_spurious_wakeups: bool },
    /// A `Future` that returned `Pending` is waiting to be woken up
    Sleeping,
    /// Task has finished
    Finished,
}

#[derive(PartialEq, Eq, Clone, Copy, Debug, Default)]
pub(crate) struct ParkState {
    /// Whether the task's park token is currently available. If it's available, then the next time
    /// the task calls `park`, the token will be atomically consumed and the task will continue
    /// executing. If it's not available, then the task will block until either another task makes
    /// it available with `unpark`, or a spurious wakeup occurs.
    token_available: bool,

    /// Whether the task is currently blocked in a call to `park`.
    /// Invariant: `!(token_available && blocked_in_park)`. If the token is available, then the task
    /// shouldn't be blocked in a call to `park`---the task should either have been woken up when
    /// the token became available, or never have blocked in the first place if the token was
    /// available before the call to `park`.
    blocked_in_park: bool,
}

/// A `TaskId` is a unique identifier for a task. `TaskId`s are never reused within a single
/// execution.
#[derive(PartialEq, Eq, Hash, Clone, Copy, PartialOrd, Ord)]
pub struct TaskId(pub(super) usize);

impl Debug for TaskId {
    // If the `TaskName` label is set, use that when generating the Debug string
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if let Some(name) = get_name_for_task(*self) {
            f.write_str(&format!("{:?}({})", name, self.0))
        } else {
            f.debug_tuple("TaskId").field(&self.0).finish()
        }
    }
}

impl From<usize> for TaskId {
    fn from(id: usize) -> Self {
        TaskId(id)
    }
}

impl From<TaskId> for usize {
    fn from(tid: TaskId) -> usize {
        tid.0
    }
}

/// A `TaskSet` is a set of `TaskId`s but implemented efficiently as a BitVec
#[derive(PartialEq, Eq)]
pub(crate) struct TaskSet {
    tasks: BitVec,
}

impl TaskSet {
    pub const fn new() -> Self {
        Self { tasks: BitVec::EMPTY }
    }

    pub fn contains(&self, tid: TaskId) -> bool {
        // Return false if tid is outside the TaskSet
        (tid.0 < self.tasks.len()) && self.tasks[tid.0]
    }

    pub fn is_empty(&self) -> bool {
        self.tasks.iter().all(|b| !*b)
    }

    /// Add a task to the set. If the set did not have this value present, `true` is returned. If
    /// the set did have this value present, `false` is returned.
    pub fn insert(&mut self, tid: TaskId) -> bool {
        if tid.0 >= self.tasks.len() {
            self.tasks.resize(DEFAULT_INLINE_TASKS.max(1 + tid.0), false);
        }
        !std::mem::replace(&mut *self.tasks.get_mut(tid.0).unwrap(), true)
    }

    /// Removes a value from the set. Returns whether the value was present in the set.
    pub fn remove(&mut self, tid: TaskId) -> bool {
        if tid.0 >= self.tasks.len() {
            return false;
        }
        std::mem::replace(&mut self.tasks.get_mut(tid.0).unwrap(), false)
    }

    pub fn iter(&self) -> impl Iterator<Item = TaskId> + '_ {
        self.tasks
            .iter()
            .enumerate()
            .filter(|(_, b)| **b)
            .map(|(i, _)| TaskId(i))
    }
}

impl Debug for TaskSet {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "TaskSet {{ ")?;
        for (i, t) in self.iter().enumerate() {
            if i > 0 {
                write!(f, ", ")?;
            }
            write!(f, "{t:?}")?;
        }
        write!(f, " }}")
    }
}

impl<T: 'static> From<&'static LocalKey<T>> for StorageKey {
    fn from(key: &'static LocalKey<T>) -> Self {
        Self(key as *const _ as usize, 0x1)
    }
}