1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
//! # Introduction
//!
//! This is a platform agnostic Rust driver for the Sensirion SHTCx temperature /
//! humidity sensor series, based on the
//! [`embedded-hal`](https://github.com/rust-embedded/embedded-hal) traits.
//!
//! ## Supported Devices
//!
//! Tested with the following sensors:
//!
//! - [SHTC1](https://www.sensirion.com/shtc1/)
//! - [SHTC3](https://www.sensirion.com/shtc3/)
//!
//! The following sensors were not tested, but should work out-of-the-box:
//!
//! - [SHTW2](https://www.sensirion.com/shtw2/)
//!
//! ## Blocking / Non-Blocking Modes
//!
//! This driver provides blocking and non-blocking calls. The blocking calls delay the execution
//! until the measurement is done and return the results. The non-blocking ones just start the
//! measurement and allow the application code to do other stuff and get the results afterwards.
//!
//! ## Clock Stretching
//!
//! While the sensor would provide measurement commands with clock stretching to indicate when the
//! measurement is done, this is not implemented and probably won't be.
//!
//! ## Examples
//!
//! There are a few examples in the `examples` directory: The `linux-<target>`
//! example queries the sensor a few times using `linux-embedded-hal`, while
//! the `monitor-<target>` example implements a terminal based real-time
//! graphical temperature/humidity monitoring tool.
//!
//! ![gif](https://raw.githubusercontent.com/dbrgn/shtcx-rs/master/monitor.gif)
//!
//! ## Usage
//!
//! ### Setup
//!
//! Instantiate a new driver instance using a [blocking I²C HAL
//! implementation](https://docs.rs/embedded-hal/0.2.*/embedded_hal/blocking/i2c/index.html)
//! and a [blocking `Delay`
//! instance](https://docs.rs/embedded-hal/0.2.*/embedded_hal/blocking/delay/index.html).
//! For example, using `linux-embedded-hal` and an SHTC3 sensor:
//!
//! ```no_run
//! use linux_embedded_hal::{Delay, I2cdev};
//! use shtcx;
//!
//! let dev = I2cdev::new("/dev/i2c-1").unwrap();
//! let mut sht = shtcx::shtc3(dev);
//! ```
//!
//! ### Device Info
//!
//! Then, you can query information about the sensor:
//!
//! ```no_run
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use shtcx;
//! # let mut sht = shtcx::shtc3(I2cdev::new("/dev/i2c-1").unwrap());
//! let device_id = sht.device_identifier().unwrap();
//! let raw_id = sht.raw_id_register().unwrap();
//! ```
//!
//! ### Measurements
//!
//! For measuring your environment, you can either measure just temperature,
//! just humidity, or both:
//!
//! ```no_run
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use shtcx;
//! use shtcx::PowerMode;
//! # let mut sht = shtcx::shtc3(I2cdev::new("/dev/i2c-1").unwrap());
//! let mut delay = Delay;
//!
//! let temperature = sht.measure_temperature(PowerMode::NormalMode, &mut delay).unwrap();
//! let humidity = sht.measure_humidity(PowerMode::NormalMode, &mut delay).unwrap();
//! let combined = sht.measure(PowerMode::NormalMode, &mut delay).unwrap();
//!
//! println!("Temperature: {} °C", temperature.as_degrees_celsius());
//! println!("Humidity: {} %RH", humidity.as_percent());
//! println!("Combined: {} °C / {} %RH",
//!          combined.temperature.as_degrees_celsius(),
//!          combined.humidity.as_percent());
//! ```
//!
//! You can also use the low power mode for less power consumption, at the cost
//! of reduced repeatability and accuracy of the sensor signals. For more
//! information, see the ["Low Power Measurement Mode" application note][an-low-power].
//!
//! [an-low-power]: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHTC3_Low_Power_Measurement_Mode.pdf
//!
//! ```no_run
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use shtcx::{self, PowerMode};
//! # let mut sht = shtcx::shtc3(I2cdev::new("/dev/i2c-1").unwrap());
//! let mut delay = Delay;
//! let measurement = sht.measure(PowerMode::LowPower, &mut delay).unwrap();
//! ```
//!
//! ### Low Power Mode
//!
//! Some of the sensors (e.g. the SHTC3, but not the SHTC1) support a low power
//! mode, where the sensor can be set to sleep mode when in idle state.
//!
//! For this, the `LowPower` trait needs to be imported:
//!
//! ```
//! use shtcx::LowPower;
//! ```
//!
//! Then you can send the sensor to sleep and wake it up again before
//! triggering a new measurement:
//!
//! ```no_run
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use shtcx::{self, PowerMode, LowPower};
//! # let mut sht = shtcx::shtc3(I2cdev::new("/dev/i2c-1").unwrap());
//! let mut delay = Delay;
//! sht.sleep().unwrap();
//! // ...
//! sht.wakeup(&mut delay).unwrap();
//! ```
//!
//! Invoking any command other than
//! [`wakeup`](trait.LowPower.html#tymethod.wakeup) while the sensor is in
//! sleep mode will result in an error.
//!
//! ### Soft Reset
//!
//! The SHTCx provides a soft reset mechanism that forces the system into a
//! well-defined state without removing the power supply. If the system is in
//! its idle state (i.e. if no measurement is in progress) the soft reset
//! command can be sent. This triggers the sensor to reset all internal state
//! machines and reload calibration data from the memory.
//!
//! ```no_run
//! # use linux_embedded_hal::{Delay, I2cdev};
//! # use shtcx::{self, PowerMode};
//! # let mut sht = shtcx::shtc3(I2cdev::new("/dev/i2c-1").unwrap());
//! let mut delay = Delay;
//! sht.reset(&mut delay).unwrap();
//! ```
//!
//! ### Generic Driver
//!
//! The `shtcx` driver supports use cases where the exact model of the sensor
//! is not known in advance. In that case, use the [`generic`](fn.generic.html)
//! factory function to create an instance of the driver that supports all
//! features available in all supported sensor types.
//!
//! Note however that sending commands to sensors that don't implement them
//! (e.g. sending a [`sleep`](trait.LowPower.html#tymethod.sleep)-command to an
//! SHTC1 sensor) will result in a runtime error. Furthermore, maximal timing
//! tolerances will be ensured, so using the generic driver with the SHTC3 will
//! result in slightly slower measurements (and slightly higher power
//! consumption) than when using the SHTC3 specific driver.
#![deny(unsafe_code, missing_docs)]
#![cfg_attr(not(test), no_std)]

mod crc;
mod types;

use core::marker::PhantomData;

use embedded_hal::blocking::delay::DelayUs;
use embedded_hal::blocking::i2c::{Read, Write};

use crc::crc8;
pub use types::*;

/// Whether temperature or humidity is returned first when doing a measurement.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum MeasurementOrder {
    TemperatureFirst,
    HumidityFirst,
}
use MeasurementOrder::*;

/// Measurement power mode: Normal mode or low power mode.
///
/// The sensors provides a low power measurement mode. Using the low power mode
/// significantly shortens the measurement duration and thus minimizes the
/// energy consumption per measurement. The benefit of ultra-low power
/// consumption comes at the cost of reduced repeatability of the sensor
/// signals: while the impact on the relative humidity signal is negligible and
/// does not affect accuracy, it has an effect on temperature accuracy.
///
/// More details can be found in the ["Low Power Measurement Mode" application
/// note][an-low-power] by Sensirion.
///
/// [an-low-power]: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHTC3_Low_Power_Measurement_Mode.pdf
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PowerMode {
    /// Normal measurement.
    NormalMode,
    /// Low power measurement: Less energy consumption, but repeatability and
    /// accuracy of measurements are negatively impacted.
    LowPower,
}

/// All possible errors in this crate
#[derive(Debug, PartialEq, Clone)]
pub enum Error<E> {
    /// I²C bus error
    I2c(E),
    /// CRC checksum validation failed
    Crc,
}

/// I²C commands sent to the sensor.
#[derive(Debug, Copy, Clone)]
enum Command {
    /// Go into sleep mode.
    Sleep,
    /// Wake up from sleep mode.
    WakeUp,
    /// Measurement commands.
    Measure {
        power_mode: PowerMode,
        order: MeasurementOrder,
    },
    /// Software reset.
    SoftwareReset,
    /// Read ID register.
    ReadIdRegister,
}

impl Command {
    fn as_bytes(self) -> [u8; 2] {
        match self {
            Command::Sleep => [0xB0, 0x98],
            Command::WakeUp => [0x35, 0x17],
            Command::Measure {
                power_mode: PowerMode::NormalMode,
                order: TemperatureFirst,
            } => [0x78, 0x66],
            Command::Measure {
                power_mode: PowerMode::NormalMode,
                order: HumidityFirst,
            } => [0x58, 0xE0],
            Command::Measure {
                power_mode: PowerMode::LowPower,
                order: TemperatureFirst,
            } => [0x60, 0x9C],
            Command::Measure {
                power_mode: PowerMode::LowPower,
                order: HumidityFirst,
            } => [0x40, 0x1A],
            Command::ReadIdRegister => [0xEF, 0xC8],
            Command::SoftwareReset => [0x80, 0x5D],
        }
    }
}

/// Determine the maximum measurement duration (according to the datasheet).
pub trait MeasurementDuration {
    /// Return the maximum measurement duration (depending on the mode) in
    /// microseconds.
    fn max_measurement_duration(mode: PowerMode) -> u16;
}

/// Type parameters for the different sensor classes.
pub mod sensor_class {
    /// Type parameter: First generation SHT sensor (SHTC1, SHTW2).
    pub struct Sht1Gen;
    /// Type parameter: Second generation SHT sensor (SHTC3).
    pub struct Sht2Gen;
    /// Type parameter: Generic driver that should work with all SHTCx sensors.
    pub struct ShtGeneric;
}

/// Marker trait implemented for all supported sensor classes.
pub trait ShtSensor {}
impl ShtSensor for sensor_class::Sht1Gen {}
impl ShtSensor for sensor_class::Sht2Gen {}
impl ShtSensor for sensor_class::ShtGeneric {}

/// Driver for the SHTCx sensor.
///
/// To create an instance of this, use a factory function like
/// [`shtc1`](fn.shtc1.html) or [`shtc3`](fn.shtc3.html) depending on your
/// sensor.
#[derive(Debug, Default)]
pub struct ShtCx<S: ShtSensor, I2C> {
    /// The chosen target sensor.
    sensor: PhantomData<S>,
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// The I²C device address.
    address: u8,
}

/// ShtC1 sensor
pub type ShtC1<I2C> = ShtCx<sensor_class::Sht1Gen, I2C>;

/// Create a new instance of the driver for the SHTC1.
///
/// See [ShtCx](struct.ShtCx.html) for detailed documentation of the available
/// methods.
pub fn shtc1<I2C>(i2c: I2C) -> ShtC1<I2C> {
    ShtCx {
        sensor: PhantomData,
        i2c,
        address: 0x70,
    }
}

/// ShtC3 sensor
pub type ShtC3<I2C> = ShtCx<sensor_class::Sht2Gen, I2C>;

/// Create a new instance of the driver for the SHTC3.
///
/// See [ShtCx](struct.ShtCx.html) for detailed documentation of the available
/// methods.
pub fn shtc3<I2C>(i2c: I2C) -> ShtC3<I2C> {
    ShtCx {
        sensor: PhantomData,
        i2c,
        address: 0x70,
    }
}

/// ShtW2 sensor
pub type ShtW2<I2C> = ShtCx<sensor_class::Sht1Gen, I2C>;

/// Create a new instance of the driver for the SHTW2.
///
/// Since the SHTW2 is also available in an alternative address version, the
/// I²C address must be explicitly specified. For the standard SHTW2, it's 0x70.
///
/// See [ShtCx](struct.ShtCx.html) for detailed documentation of the available
/// methods.
pub fn shtw2<I2C>(i2c: I2C, address: u8) -> ShtW2<I2C> {
    // Note: Internally, the SHTW2 is identical to the SHTC1, just with
    // different packaging.
    ShtCx {
        sensor: PhantomData,
        i2c,
        address,
    }
}

/// Create a new generic instance of the driver.
///
/// See [ShtCx](struct.ShtCx.html) for detailed documentation of the available
/// methods.
pub fn generic<I2C>(i2c: I2C, address: u8) -> ShtCx<sensor_class::ShtGeneric, I2C> {
    ShtCx {
        sensor: PhantomData,
        i2c,
        address,
    }
}

impl MeasurementDuration for sensor_class::Sht1Gen {
    /// Return the maximum measurement duration in microseconds.
    ///
    /// Maximum measurement duration:
    /// - Normal mode: 14.4 ms (SHTC1/SHTW2 datasheet 3.1)
    /// - Low power mode: 0.94 us (SHTC1/SHTW2 low power application note)
    fn max_measurement_duration(mode: PowerMode) -> u16 {
        match mode {
            PowerMode::NormalMode => 14400,
            PowerMode::LowPower => 940,
        }
    }
}

impl MeasurementDuration for sensor_class::Sht2Gen {
    /// Return the maximum measurement duration (depending on the mode) in
    /// microseconds.
    ///
    /// Maximum measurement duration (SHTC3 datasheet 3.1):
    /// - Normal mode: 12.1 ms
    /// - Low power mode: 0.8 ms
    fn max_measurement_duration(mode: PowerMode) -> u16 {
        match mode {
            PowerMode::NormalMode => 12100,
            PowerMode::LowPower => 800,
        }
    }
}

impl MeasurementDuration for sensor_class::ShtGeneric {
    /// Return the maximum measurement duration (depending on the mode) in
    /// microseconds.
    ///
    /// Because this duration should work for all sensor models, it chooses the
    /// maximum duration of all models.
    ///
    /// Maximum measurement duration:
    /// - Normal mode: 14.4 ms (SHTC1, SHTW2)
    /// - Low power mode: 0.94 ms (SHTC1, SHTW2)
    fn max_measurement_duration(mode: PowerMode) -> u16 {
        match mode {
            PowerMode::NormalMode => 14400,
            PowerMode::LowPower => 940,
        }
    }
}

/// Shortcut function to get the maximum measurement duration of a [`ShtCx`]
/// instance.
///
/// This allows you to get the maximum measurement duration for a sensor
/// instance without knowing its sensor class type parameter.
///
/// See [`MeasurementDuration`] docs for more information.
///
/// [`ShtCx`]: struct.ShtCx.html
/// [`MeasurementDuration`]: trait.MeasurementDuration.html
#[inline(always)]
pub fn max_measurement_duration<S, I2C>(_: &ShtCx<S, I2C>, mode: PowerMode) -> u16
where
    S: ShtSensor + MeasurementDuration,
{
    S::max_measurement_duration(mode)
}

/// General functions.
impl<S, I2C, E> ShtCx<S, I2C>
where
    S: ShtSensor,
    I2C: Read<Error = E> + Write<Error = E>,
{
    /// Destroy driver instance, return I²C bus instance.
    pub fn destroy(self) -> I2C {
        self.i2c
    }

    /// Write an I²C command to the sensor.
    fn send_command(&mut self, command: Command) -> Result<(), Error<E>> {
        self.i2c
            .write(self.address, &command.as_bytes())
            .map_err(Error::I2c)
    }

    /// Iterate over the provided buffer and validate the CRC8 checksum.
    ///
    /// If the checksum is wrong, return `Error::Crc`.
    ///
    /// Note: This method will consider every third byte a checksum byte. If
    /// the buffer size is not a multiple of 3, then not all data will be
    /// validated.
    fn validate_crc(&self, buf: &[u8]) -> Result<(), Error<E>> {
        for chunk in buf.chunks(3) {
            if chunk.len() == 3 && crc8(&[chunk[0], chunk[1]]) != chunk[2] {
                return Err(Error::Crc);
            }
        }
        Ok(())
    }

    /// Read data into the provided buffer and validate the CRC8 checksum.
    ///
    /// If the checksum is wrong, return `Error::Crc`.
    ///
    /// Note: This method will consider every third byte a checksum byte. If
    /// the buffer size is not a multiple of 3, then not all data will be
    /// validated.
    fn read_with_crc(&mut self, mut buf: &mut [u8]) -> Result<(), Error<E>> {
        self.i2c.read(self.address, &mut buf).map_err(Error::I2c)?;
        self.validate_crc(buf)
    }

    /// Return the raw ID register.
    pub fn raw_id_register(&mut self) -> Result<u16, Error<E>> {
        // Request serial number
        self.send_command(Command::ReadIdRegister)?;

        // Read id register
        let mut buf = [0; 3];
        self.read_with_crc(&mut buf)?;

        Ok(u16::from_be_bytes([buf[0], buf[1]]))
    }

    /// Return the 7-bit device identifier.
    ///
    /// Should be 0x47 (71) for the SHTC3 and 0x07 (7) for the SHTC1.
    pub fn device_identifier(&mut self) -> Result<u8, Error<E>> {
        let ident = self.raw_id_register()?;
        let lsb = (ident & 0b0011_1111) as u8;
        let msb = ((ident & 0b00001000_00000000) >> 5) as u8;
        Ok(lsb | msb)
    }

    /// Trigger a soft reset.
    ///
    /// The SHTC3 provides a soft reset mechanism that forces the system into a
    /// well-defined state without removing the power supply. If the system is
    /// in its idle state (i.e. if no measurement is in progress) the soft
    /// reset command can be sent. This triggers the sensor to reset all
    /// internal state machines and reload calibration data from the memory.
    pub fn reset(&mut self, delay: &mut impl DelayUs<u16>) -> Result<(), Error<E>> {
        self.send_command(Command::SoftwareReset)?;
        // Table 5: 180-240 µs
        delay.delay_us(240);
        Ok(())
    }
}

/// Asynchronous functions for starting / reading measurements.
impl<S, I2C, E> ShtCx<S, I2C>
where
    S: ShtSensor,
    I2C: Read<Error = E> + Write<Error = E>,
{
    /// Start a measurement with the specified measurement order and write the
    /// result into the provided buffer.
    ///
    /// If you just need one of the two measurements, provide a 3-byte buffer
    /// instead of a 6-byte buffer.
    fn start_measure_partial(
        &mut self,
        power_mode: PowerMode,
        order: MeasurementOrder,
    ) -> Result<(), Error<E>> {
        // Request measurement
        self.send_command(Command::Measure { power_mode, order })
    }

    /// Start a temperature / humidity measurement.
    pub fn start_measurement(&mut self, mode: PowerMode) -> Result<(), Error<E>> {
        self.start_measure_partial(mode, MeasurementOrder::TemperatureFirst)
    }

    /// Read the result of a temperature / humidity measurement.
    pub fn get_measurement_result(&mut self) -> Result<Measurement, Error<E>> {
        let mut buf = [0; 6];
        self.read_with_crc(&mut buf)?;
        Ok(Measurement {
            temperature: Temperature::from_raw(u16::from_be_bytes([buf[0], buf[1]])),
            humidity: Humidity::from_raw(u16::from_be_bytes([buf[3], buf[4]])),
        })
    }

    /// Start a temperature measurement.
    pub fn start_temperature_measurement(&mut self, mode: PowerMode) -> Result<(), Error<E>> {
        self.start_measure_partial(mode, MeasurementOrder::TemperatureFirst)
    }

    /// Read the result of a temperature measurement.
    pub fn get_temperature_measurement_result(&mut self) -> Result<Temperature, Error<E>> {
        let mut buf = [0; 3];
        self.read_with_crc(&mut buf)?;
        Ok(Temperature::from_raw(u16::from_be_bytes([buf[0], buf[1]])))
    }

    /// Start a humidity measurement.
    pub fn start_humidity_measurement(&mut self, mode: PowerMode) -> Result<(), Error<E>> {
        self.start_measure_partial(mode, MeasurementOrder::HumidityFirst)
    }

    /// Read the result of a humidity measurement.
    pub fn get_humidity_measurement_result(&mut self) -> Result<Humidity, Error<E>> {
        let mut buf = [0; 3];
        self.read_with_crc(&mut buf)?;
        Ok(Humidity::from_raw(u16::from_be_bytes([buf[0], buf[1]])))
    }
}

/// Blocking functions for doing measurements.
impl<S, I2C, E> ShtCx<S, I2C>
where
    S: ShtSensor + MeasurementDuration,
    I2C: Read<Error = E> + Write<Error = E>,
{
    /// Wait the maximum time needed for the given measurement mode
    pub fn wait_for_measurement(&mut self, mode: PowerMode, delay: &mut impl DelayUs<u16>) {
        delay.delay_us(S::max_measurement_duration(mode));
    }

    /// Run a temperature/humidity measurement and return the combined result.
    ///
    /// This is a blocking function call.
    pub fn measure(
        &mut self,
        mode: PowerMode,
        delay: &mut impl DelayUs<u16>,
    ) -> Result<Measurement, Error<E>> {
        self.start_measurement(mode)?;
        self.wait_for_measurement(mode, delay);
        self.get_measurement_result()
    }

    /// Run a temperature measurement and return the result.
    ///
    /// This is a blocking function call.
    ///
    /// Internally, it will request a measurement in "temperature first" mode
    /// and only read the first half of the measurement response.
    pub fn measure_temperature(
        &mut self,
        mode: PowerMode,
        delay: &mut impl DelayUs<u16>,
    ) -> Result<Temperature, Error<E>> {
        self.start_temperature_measurement(mode)?;
        self.wait_for_measurement(mode, delay);
        self.get_temperature_measurement_result()
    }

    /// Run a humidity measurement and return the result.
    ///
    /// This is a blocking function call.
    ///
    /// Internally, it will request a measurement in "humidity first" mode
    /// and only read the first half of the measurement response.
    pub fn measure_humidity(
        &mut self,
        mode: PowerMode,
        delay: &mut impl DelayUs<u16>,
    ) -> Result<Humidity, Error<E>> {
        self.start_humidity_measurement(mode)?;
        self.wait_for_measurement(mode, delay);
        self.get_humidity_measurement_result()
    }
}

/// Low power functionality (sleep and wakeup).
///
/// This functionality is only present on some of the sensors (e.g. the SHTC3,
/// but not the SHTC1).
pub trait LowPower<E> {
    /// Time the sensor needs until it is ready after a wakeup call.
    const WAKEUP_TIME_US: u16;

    /// Set sensor to sleep mode.
    ///
    /// When in sleep mode, the sensor consumes around 0.3-0.6 µA. It requires
    /// a dedicated [`wakeup`](#method.wakeup) command to enable further I2C
    /// communication.
    fn sleep(&mut self) -> Result<(), Error<E>>;

    /// Wake up sensor from [sleep mode](#method.sleep).
    fn start_wakeup(&mut self) -> Result<(), Error<E>>;

    /// Wake up sensor from [sleep mode](#method.sleep) and wait until it is ready.
    fn wakeup(&mut self, delay: &mut impl DelayUs<u16>) -> Result<(), Error<E>>;
}

macro_rules! impl_low_power {
    ($target:ty) => {
        impl<I2C, E> LowPower<E> for ShtCx<$target, I2C>
        where
            I2C: Read<Error = E> + Write<Error = E>,
        {
            // Table 5: 180-240 µs
            const WAKEUP_TIME_US: u16 = 240;

            fn sleep(&mut self) -> Result<(), Error<E>> {
                self.send_command(Command::Sleep)
            }

            fn start_wakeup(&mut self) -> Result<(), Error<E>> {
                self.send_command(Command::WakeUp)
            }

            fn wakeup(&mut self, delay: &mut impl DelayUs<u16>) -> Result<(), Error<E>> {
                self.start_wakeup()?;
                delay.delay_us(Self::WAKEUP_TIME_US);
                Ok(())
            }
        }
    };
}

impl_low_power!(sensor_class::Sht2Gen);
impl_low_power!(sensor_class::ShtGeneric);

#[cfg(test)]
mod tests {
    use super::*;

    use std::io::ErrorKind;

    use embedded_hal_mock::delay::MockNoop as NoopDelay;
    use embedded_hal_mock::i2c::{Mock as I2cMock, Transaction};
    use embedded_hal_mock::MockError;

    const SHT_ADDR: u8 = 0x70;

    mod core {
        use super::*;

        /// Test whether the `send_command` function propagates I²C errors.
        #[test]
        fn send_command_error() {
            let expectations = [Transaction::write(SHT_ADDR, vec![0xef, 0xc8])
                .with_error(MockError::Io(ErrorKind::Other))];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc1(mock);
            let err = sht.send_command(Command::ReadIdRegister).unwrap_err();
            assert_eq!(err, Error::I2c(MockError::Io(ErrorKind::Other)));
            sht.destroy().done();
        }

        /// Test the `validate_crc` function.
        #[test]
        fn validate_crc() {
            let mock = I2cMock::new(&[]);
            let sht = shtc3(mock);

            // Not enough data
            sht.validate_crc(&[]).unwrap();
            sht.validate_crc(&[0xbe]).unwrap();
            sht.validate_crc(&[0xbe, 0xef]).unwrap();

            // Valid CRC
            sht.validate_crc(&[0xbe, 0xef, 0x92]).unwrap();

            // Invalid CRC
            match sht.validate_crc(&[0xbe, 0xef, 0x91]) {
                Err(Error::Crc) => {}
                Err(_) => panic!("Invalid error: Must be Crc"),
                Ok(_) => panic!("CRC check did not fail"),
            }

            // Valid CRC (8 bytes)
            sht.validate_crc(&[0xbe, 0xef, 0x92, 0xbe, 0xef, 0x92, 0x00, 0x00])
                .unwrap();

            // Invalid CRC (8 bytes)
            match sht.validate_crc(&[0xbe, 0xef, 0x92, 0xbe, 0xef, 0xff, 0x00, 0x00]) {
                Err(Error::Crc) => {}
                Err(_) => panic!("Invalid error: Must be Crc"),
                Ok(_) => panic!("CRC check did not fail"),
            }

            sht.destroy().done();
        }

        /// Test the `read_with_crc` function.
        #[test]
        fn read_with_crc() {
            let mut buf = [0; 3];

            // Valid CRC
            let expectations = [Transaction::read(SHT_ADDR, vec![0xbe, 0xef, 0x92])];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            sht.read_with_crc(&mut buf).unwrap();
            assert_eq!(buf, [0xbe, 0xef, 0x92]);
            sht.destroy().done();

            // Invalid CRC
            let expectations = [Transaction::read(SHT_ADDR, vec![0xbe, 0xef, 0x00])];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            match sht.read_with_crc(&mut buf) {
                Err(Error::Crc) => {}
                Err(_) => panic!("Invalid error: Must be Crc"),
                Ok(_) => panic!("CRC check did not fail"),
            }
            assert_eq!(buf, [0xbe, 0xef, 0x00]); // Buf was changed
            sht.destroy().done();
        }
    }

    mod factory_functions {
        use super::*;

        #[test]
        fn new_shtc1() {
            let mock = I2cMock::new(&[]);
            let sht = shtc1(mock);
            assert_eq!(sht.address, 0x70);
        }

        #[test]
        fn new_shtc3() {
            let mock = I2cMock::new(&[]);
            let sht = shtc3(mock);
            assert_eq!(sht.address, 0x70);
        }

        #[test]
        fn new_shtw2() {
            let mock = I2cMock::new(&[]);
            let sht = shtw2(mock, 0x42);
            assert_eq!(sht.address, 0x42);
        }

        #[test]
        fn new_generic() {
            let mock = I2cMock::new(&[]);
            let sht = generic(mock, 0x23);
            assert_eq!(sht.address, 0x23);
        }
    }

    mod device_info {
        use super::*;

        /// Test the `raw_id_register` function.
        #[test]
        fn raw_id_register() {
            let msb = 0b00001000;
            let lsb = 0b00000111;
            let crc = crc8(&[msb, lsb]);
            let expectations = [
                Transaction::write(SHT_ADDR, vec![0xef, 0xc8]),
                Transaction::read(SHT_ADDR, vec![msb, lsb, crc]),
            ];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            let val = sht.raw_id_register().unwrap();
            assert_eq!(val, (msb as u16) << 8 | (lsb as u16));
            sht.destroy().done();
        }

        /// Test the `device_identifier` function.
        #[test]
        fn device_identifier() {
            let msb = 0b00001000;
            let lsb = 0b00000111;
            let crc = crc8(&[msb, lsb]);
            let expectations = [
                Transaction::write(SHT_ADDR, vec![0xef, 0xc8]),
                Transaction::read(SHT_ADDR, vec![msb, lsb, crc]),
            ];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            let ident = sht.device_identifier().unwrap();
            assert_eq!(ident, 0b01000111);
            sht.destroy().done();
        }
    }

    mod measurements {
        use super::*;

        #[test]
        fn measure_normal() {
            let expectations = [
                // Expect a write command: Normal mode measurement, temperature
                // first, no clock stretching.
                Transaction::write(SHT_ADDR, vec![0x78, 0x66]),
                // Return the measurement result (using example values from the
                // datasheet, section 5.4 "Measuring and Reading the Signals")
                Transaction::read(
                    SHT_ADDR,
                    vec![
                        0b0110_0100,
                        0b1000_1011,
                        0b1100_0111,
                        0b1010_0001,
                        0b0011_0011,
                        0b0001_1100,
                    ],
                ),
            ];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc1(mock);
            let mut delay = NoopDelay;
            let measurement = sht.measure(PowerMode::NormalMode, &mut delay).unwrap();
            assert_eq!(measurement.temperature.as_millidegrees_celsius(), 23_730); // 23.7°C
            assert_eq!(measurement.humidity.as_millipercent(), 62_968); // 62.9 %RH
            sht.destroy().done();
        }

        #[test]
        fn measure_low_power() {
            let expectations = [
                // Expect a write command: Low power mode measurement, temperature
                // first, no clock stretching.
                Transaction::write(SHT_ADDR, vec![0x60, 0x9C]),
                // Return the measurement result (using example values from the
                // datasheet, section 5.4 "Measuring and Reading the Signals")
                Transaction::read(
                    SHT_ADDR,
                    vec![
                        0b0110_0100,
                        0b1000_1011,
                        0b1100_0111,
                        0b1010_0001,
                        0b0011_0011,
                        0b0001_1100,
                    ],
                ),
            ];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            let mut delay = NoopDelay;
            let measurement = sht.measure(PowerMode::LowPower, &mut delay).unwrap();
            assert_eq!(measurement.temperature.as_millidegrees_celsius(), 23_730); // 23.7°C
            assert_eq!(measurement.humidity.as_millipercent(), 62_968); // 62.9 %RH
            sht.destroy().done();
        }

        #[test]
        fn measure_temperature_only() {
            let expectations = [
                // Expect a write command: Normal mode measurement, temperature
                // first, no clock stretching.
                Transaction::write(SHT_ADDR, vec![0x78, 0x66]),
                // Return the measurement result (using example values from the
                // datasheet, section 5.4 "Measuring and Reading the Signals")
                Transaction::read(SHT_ADDR, vec![0b0110_0100, 0b1000_1011, 0b1100_0111]),
            ];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            let mut delay = NoopDelay;
            let temperature = sht
                .measure_temperature(PowerMode::NormalMode, &mut delay)
                .unwrap();
            assert_eq!(temperature.as_millidegrees_celsius(), 23_730); // 23.7°C
            sht.destroy().done();
        }

        #[test]
        fn measure_humidity_only() {
            let expectations = [
                // Expect a write command: Normal mode measurement, humidity
                // first, no clock stretching.
                Transaction::write(SHT_ADDR, vec![0x58, 0xE0]),
                // Return the measurement result (using example values from the
                // datasheet, section 5.4 "Measuring and Reading the Signals")
                Transaction::read(SHT_ADDR, vec![0b1010_0001, 0b0011_0011, 0b0001_1100]),
            ];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            let mut delay = NoopDelay;
            let humidity = sht
                .measure_humidity(PowerMode::NormalMode, &mut delay)
                .unwrap();
            assert_eq!(humidity.as_millipercent(), 62_968); // 62.9 %RH
            sht.destroy().done();
        }

        /// Ensure that I²C write errors are handled when measuring.
        #[test]
        fn measure_write_error() {
            let expectations = [Transaction::write(SHT_ADDR, vec![0x60, 0x9C])
                .with_error(MockError::Io(ErrorKind::Other))];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            let err = sht
                .measure(PowerMode::LowPower, &mut NoopDelay)
                .unwrap_err();
            assert_eq!(err, Error::I2c(MockError::Io(ErrorKind::Other)));
            sht.destroy().done();
        }
    }

    mod power_management {
        use super::*;

        /// Test the `sleep` function.
        #[test]
        fn sleep() {
            let expectations = [Transaction::write(SHT_ADDR, vec![0xB0, 0x98])];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            sht.sleep().unwrap();
            sht.destroy().done();
        }

        /// Test the `wakeup` function.
        #[test]
        fn wakeup() {
            let expectations = [Transaction::write(SHT_ADDR, vec![0x35, 0x17])];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            sht.wakeup(&mut NoopDelay).unwrap();
            sht.destroy().done();
        }

        /// Test the `reset` function.
        #[test]
        fn reset() {
            let expectations = [Transaction::write(SHT_ADDR, vec![0x80, 0x5D])];
            let mock = I2cMock::new(&expectations);
            let mut sht = shtc3(mock);
            sht.reset(&mut NoopDelay).unwrap();
            sht.destroy().done();
        }
    }

    mod max_measurement_duration {
        use super::*;

        #[test]
        fn shortcut_function() {
            let c1 = shtc1(I2cMock::new(&[]));
            let c3 = shtc3(I2cMock::new(&[]));

            assert_eq!(max_measurement_duration(&c1, PowerMode::NormalMode), 14400);
            assert_eq!(max_measurement_duration(&c1, PowerMode::LowPower), 940);
            assert_eq!(max_measurement_duration(&c3, PowerMode::NormalMode), 12100);
            assert_eq!(max_measurement_duration(&c3, PowerMode::LowPower), 800);
        }
    }
}