1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use crate::{
    cfg::{self, CfgPrivate, DefaultConfig},
    clear::Clear,
    page,
    tid::Tid,
    Pack, Shard,
};

use std::{fmt, marker::PhantomData};

/// A lock-free concurrent object pool.
///
/// Slabs provide pre-allocated storage for many instances of a single type. But, when working with
/// heap allocated objects, the advantages of a slab are lost, as the memory allocated for the
/// object is freed when the object is removed from the slab. With a pool, we can instead reuse
/// this memory for objects being added to the pool in the future, therefore reducing memory
/// fragmentation and avoiding additional allocations.
///
/// This type implements a lock-free concurrent pool, indexed by `usize`s. The items stored in this
/// type need to implement [`Clear`] and `Default`.
///
/// The `Pool` type shares similar semantics to [`Slab`] when it comes to sharing across threads
/// and storing mutable shared data. The biggest difference is there are no [`Slab::insert`] and
/// [`Slab::take`] analouges for the `Pool` type. Instead new items are added to the pool by using
/// the [`Pool::create`] method, and marked for clearing by the [`Pool::clear`] method.
///
/// # Examples
///
/// Add an entry to the pool, returning an index:
/// ```
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// let key = pool.create(|item| item.push_str("hello world")).unwrap();
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// ```
///
/// Pool entries can be cleared either by manually calling [`Pool::clear`]. This marks the entry to
/// be cleared when the guards referencing to it are dropped.
/// ```
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// let key = pool.create(|item| item.push_str("hello world")).unwrap();
///
/// // Mark this entry to be cleared.
/// pool.clear(key);
///
/// // The cleared entry is no longer available in the pool
/// assert!(pool.get(key).is_none());
/// ```
/// # Configuration
///
/// Both `Pool` and [`Slab`] share the same configuration mechanism. See [crate level documentation][config-doc]
/// for more details.
///
/// [`Slab::take`]: ../struct.Slab.html#method.take
/// [`Slab::insert`]: ../struct.Slab.html#method.insert
/// [`Pool::create`]: struct.Pool.html#method.create
/// [`Pool::clear`]: struct.Pool.html#method.clear
/// [config-doc]: ../index.html#configuration
/// [`Clear`]: trait.Clear.html
/// [`Slab`]: struct.Slab.html
pub struct Pool<T, C = DefaultConfig>
where
    T: Clear + Default,
    C: cfg::Config,
{
    shards: Box<[Shard<T, C>]>,
    _cfg: PhantomData<C>,
}

impl<T> Pool<T>
where
    T: Clear + Default,
{
    pub fn new() -> Self {
        Self::new_with_config()
    }

    /// Returns a new `Pool` with the provided configuration parameters.
    pub fn new_with_config<C: cfg::Config>() -> Pool<T, C> {
        C::validate();
        let shards = (0..C::MAX_SHARDS).map(Shard::new).collect();
        Pool {
            shards,
            _cfg: PhantomData,
        }
    }
}

/// A guard that allows access to an object in a pool.
///
/// While the guard exists, it indicates to the pool that the item the guard references is
/// currently being accessed. If the item is removed from the pool while the guard exists, the
/// removal will be deferred until all guards are dropped.
pub struct PoolGuard<'a, T, C>
where
    T: Clear + Default,
    C: cfg::Config,
{
    inner: page::slot::Guard<'a, T, C>,
    shard: &'a Shard<T, C>,
    key: usize,
}

impl<T, C> Pool<T, C>
where
    T: Clear + Default,
    C: cfg::Config,
{
    /// The number of bits in each index which are used by the pool.
    ///
    /// If other data is packed into the `usize` indices returned by
    /// [`Pool::create`], user code is free to use any bits higher than the
    /// `USED_BITS`-th bit freely.
    ///
    /// This is determined by the [`Config`] type that configures the pool's
    /// parameters. By default, all bits are used; this can be changed by
    /// overriding the [`Config::RESERVED_BITS`][res] constant.
    ///
    /// [`Config`]: trait.Config.html
    /// [res]: trait.Config.html#associatedconstant.RESERVED_BITS
    /// [`Slab::insert`]: struct.Slab.html#method.insert
    pub const USED_BITS: usize = C::USED_BITS;

    /// Creates a new object in the pool, returning a key that can be used to access it.
    ///
    /// If this function returns `None`, then the shard for the current thread is full and no items
    /// can be added until some are removed, or the maximum number of shards has been reached.
    ///
    /// # Examples
    /// ```rust
    /// # use sharded_slab::Pool;
    /// let pool: Pool<String> = Pool::new();
    /// let key = pool.create(|item| item.push_str("Hello")).unwrap();
    /// assert_eq!(pool.get(key).unwrap(), String::from("Hello"));
    /// ```
    pub fn create(&self, initializer: impl FnOnce(&mut T)) -> Option<usize> {
        let tid = Tid::<C>::current();
        let mut init = Some(initializer);
        test_println!("pool: create {:?}", tid);
        self.shards[tid.as_usize()]
            .init_with(|slot| {
                let init = init.take().expect("initializer will only be called once");
                slot.initialize_state(init)
            })
            .map(|idx| tid.pack(idx))
    }

    /// Return a reference to the value associated with the given key.
    ///
    /// If the pool does not contain a value for the given key, `None` is returned instead.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use sharded_slab::Pool;
    /// let pool: Pool<String> = sharded_slab::Pool::new();
    /// let key = pool.create(|item| item.push_str("hello world")).unwrap();
    ///
    /// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
    /// assert!(pool.get(12345).is_none());
    /// ```
    pub fn get(&self, key: usize) -> Option<PoolGuard<'_, T, C>> {
        let tid = C::unpack_tid(key);

        test_println!("pool: get{:?}; current={:?}", tid, Tid::<C>::current());
        let shard = self.shards.get(tid.as_usize())?;
        let inner = shard.get(key, |x| x)?;

        Some(PoolGuard { inner, shard, key })
    }

    /// Remove the value using the storage associated with the given key from the pool, returning
    /// `true` if the value was removed.
    ///
    /// This method does _not_ block the current thread until the value can be
    /// cleared. Instead, if another thread is currently accessing that value, this marks it to be
    /// cleared by that thread when it is done accessing that value.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use sharded_slab::Pool;
    /// let pool: Pool<String> = Pool::new();
    /// let key = pool.create(|item| item.push_str("hello world")).unwrap();
    ///
    /// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
    ///
    /// pool.clear(key);
    /// assert!(pool.get(key).is_none());
    /// ```
    ///
    /// ```
    /// # use sharded_slab::Pool;
    /// let pool: Pool<String> = Pool::new();
    ///
    /// let key = pool.create(|item| item.push_str("Hello world!")).unwrap();
    ///
    /// // Clearing a key that doesn't exist in the `Pool` will return `false`
    /// assert_eq!(pool.clear(key + 69420), false);
    ///
    /// // Clearing a key that does exist returns `true`
    /// assert!(pool.clear(key));
    ///
    /// // Clearing a key that has previously been cleared will return `false`
    /// assert_eq!(pool.clear(key), false);
    /// ```
    /// [`clear`]: #method.clear
    pub fn clear(&self, key: usize) -> bool {
        let tid = C::unpack_tid(key);

        let shard = self.shards.get(tid.as_usize());
        if tid.is_current() {
            shard
                .map(|shard| shard.mark_clear_local(key))
                .unwrap_or(false)
        } else {
            shard
                .map(|shard| shard.mark_clear_remote(key))
                .unwrap_or(false)
        }
    }
}

unsafe impl<T, C> Send for Pool<T, C>
where
    T: Send + Clear + Default,
    C: cfg::Config,
{
}
unsafe impl<T, C> Sync for Pool<T, C>
where
    T: Sync + Clear + Default,
    C: cfg::Config,
{
}

impl<T> Default for Pool<T>
where
    T: Clear + Default,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<T, C> fmt::Debug for Pool<T, C>
where
    T: fmt::Debug + Clear + Default,
    C: cfg::Config,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Pool")
            .field("shards", &self.shards)
            .field("config", &C::debug())
            .finish()
    }
}

impl<'a, T, C> PoolGuard<'a, T, C>
where
    T: Clear + Default,
    C: cfg::Config,
{
    /// Returns the key used to access this guard
    pub fn key(&self) -> usize {
        self.key
    }
}

impl<'a, T, C> std::ops::Deref for PoolGuard<'a, T, C>
where
    T: Clear + Default,
    C: cfg::Config,
{
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.inner.item()
    }
}

impl<'a, T, C> Drop for PoolGuard<'a, T, C>
where
    T: Clear + Default,
    C: cfg::Config,
{
    fn drop(&mut self) {
        use crate::sync::atomic;
        test_println!(" -> drop PoolGuard: clearing data");
        if self.inner.release() {
            atomic::fence(atomic::Ordering::Acquire);
            if Tid::<C>::current().as_usize() == self.shard.tid {
                self.shard.mark_clear_local(self.key);
            } else {
                self.shard.mark_clear_remote(self.key);
            }
        }
    }
}

impl<'a, T, C> fmt::Debug for PoolGuard<'a, T, C>
where
    T: fmt::Debug + Clear + Default,
    C: cfg::Config,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.inner.item(), f)
    }
}

impl<'a, T, C> PartialEq<T> for PoolGuard<'a, T, C>
where
    T: PartialEq<T> + Clear + Default,
    C: cfg::Config,
{
    fn eq(&self, other: &T) -> bool {
        *self.inner.item() == *other
    }
}

#[cfg(test)]
mod tests;