1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
//! An implementation of the [SHA-1][1] cryptographic hash algorithm.
//!
//! # Usage
//!
//! ```rust
//! # #[macro_use] extern crate hex_literal;
//! # extern crate sha1;
//! # fn main() {
//! use sha1::{Sha1, Digest};
//!
//! // create a Sha1 object
//! let mut hasher = Sha1::new();
//!
//! // process input message
//! hasher.input(b"hello world");
//!
//! // acquire hash digest in the form of GenericArray,
//! // which in this case is equivalent to [u8; 20]
//! let result = hasher.result();
//! assert_eq!(result[..], hex!("2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"));
//! # }
//! ```
//!
//! Also see [RustCrypto/hashes][2] readme.
//!
//! [1]: https://en.wikipedia.org/wiki/SHA-1
//! [2]: https://github.com/RustCrypto/hashes
#![no_std]
#![doc(html_logo_url =
    "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")]
extern crate block_buffer;
#[macro_use] extern crate opaque_debug;
#[macro_use] pub extern crate digest;
#[cfg(feature = "std")]
extern crate std;
#[cfg(not(feature = "asm"))]
extern crate fake_simd as simd;

#[cfg(feature = "asm")]
extern crate sha1_asm as utils;
#[cfg(not(feature = "asm"))]
mod utils;

use utils::compress;

pub use digest::Digest;
use digest::{Input, BlockInput, FixedOutput, Reset};
use digest::generic_array::GenericArray;
use digest::generic_array::typenum::{U20, U64};
use block_buffer::BlockBuffer;
use block_buffer::byteorder::{BE, ByteOrder};

mod consts;
use consts::{STATE_LEN, H};

/// Structure representing the state of a SHA-1 computation
#[derive(Clone)]
pub struct Sha1 {
    h: [u32; STATE_LEN],
    len: u64,
    buffer: BlockBuffer<U64>,
}

impl Default for Sha1 {
    fn default() -> Self {
        Sha1{ h: H, len: 0u64, buffer: Default::default() }
    }
}

impl BlockInput for Sha1 {
    type BlockSize = U64;
}

impl Input for Sha1 {
    fn input<B: AsRef<[u8]>>(&mut self, input: B) {
        let input = input.as_ref();
        // Assumes that `length_bits<<3` will not overflow
        self.len += input.len() as u64;
        let state = &mut self.h;
        self.buffer.input(input, |d| compress(state, d));
    }
}

impl FixedOutput for Sha1 {
    type OutputSize = U20;

    fn fixed_result(mut self) -> GenericArray<u8, Self::OutputSize> {
        {
            let state = &mut self.h;
            let l = self.len << 3;
            self.buffer.len64_padding::<BE, _>(l, |d| compress(state, d));
        }
        let mut out = GenericArray::default();
        BE::write_u32_into(&self.h,&mut out);
        out
    }
}

impl Reset for Sha1 {
    fn reset(&mut self) {
        self.h = H;
        self.len = 0;
        self.buffer.reset();
    }
}

impl_opaque_debug!(Sha1);
impl_write!(Sha1);