1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
//! Platform agnostic Rust driver for Sensirion SGP40 device with
//! gas, temperature and humidity sensors based on
//! the [`embedded-hal`](https://github.com/japaric/embedded-hal) traits.
//!
//! ## Sensirion SGP40
//!
//! Sensirion SGP40 is a low-power accurate gas sensor for air quality application.
//! The sensor has different sampling rates to optimize power-consumption per application
//! bases as well as ability save and set the baseline for faster start-up accuracy.
//! The sensor uses I²C interface and measures TVOC (*Total Volatile Organic Compounds*)
//!
//! Datasheet: https://www.sensirion.com/file/datasheet_sgp40
//!
//! ## Usage
//!
//! ### Instantiating
//!
//! Import this crate and an `embedded_hal` implementation, then instantiate
//! the device:
//!
//! ```no_run
//! use linux_embedded_hal as hal;
//!
//! use hal::{Delay, I2cdev};
//! use sgp40::Sgp40;
//!
//! fn main() {
//!     let dev = I2cdev::new("/dev/i2c-1").unwrap();
//!     let mut sgp = Sgp40::new(dev, 0x59, Delay);
//! }
//! ```
//! ### Doing Measurements
//!
//! The device is doing measurements independently of the driver and calls to the device
//! will just fetch the latest information making the usage easy.
//!
//! ```no_run
//! use linux_embedded_hal as hal;
//! use hal::{Delay, I2cdev};
//!
//! use std::time::Duration;
//! use std::thread;
//!
//! use sgp40::Sgp40;
//!
//! fn main() {
//!     let dev = I2cdev::new("/dev/i2c-1").unwrap();
//!
//!     let mut sensor = Sgp40::new(dev, 0x59, Delay);
//!
//!     // Discard the first 45 samples as the algorithm is just warming up.
//!     for _ in 1..45 {
//!         sensor.measure_voc_index().unwrap();
//!     }
//!
//!     loop {
//!         if let Ok(result) = sensor.measure_voc_index() {
//!             println!("VOC index: {}", result);
//!         }
//!         else {
//!             println!("Failed I2C reading");
//!         }
//!
//!         thread::sleep(Duration::new(1_u64, 0));
//!     }
//! }
//! ```
//! ### VOC Index calculation
//! VOC index calculation is not no-std proof right now so if this is a problem for you, then
//! you want to turn the feature off by turning "the defaults off". Work for no-std index calculation
//! will start soon.
#![cfg_attr(not(test), no_std)]
#![allow(non_snake_case)]
#![allow(dead_code)]

use embedded_hal as hal;

use hal::blocking::delay::DelayMs;
use hal::blocking::i2c::{Read, Write, WriteRead};

use sensirion_i2c::{crc8, i2c};

#[cfg(feature = "voc_index")]
mod vocalg;

#[cfg(feature = "voc_index")]
use crate::vocalg::VocAlgorithm;

/// Sgp40 errors
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2c(E),
    /// CRC checksum validation failed
    Crc,
    /// Self test failed
    SelfTest,
}

impl<E, I2cWrite, I2cRead> From<i2c::Error<I2cWrite, I2cRead>> for Error<E>
where
    I2cWrite: Write<Error = E>,
    I2cRead: Read<Error = E>,
{
    fn from(err: i2c::Error<I2cWrite, I2cRead>) -> Self {
        match err {
            i2c::Error::Crc => Error::Crc,
            i2c::Error::I2cWrite(e) => Error::I2c(e),
            i2c::Error::I2cRead(e) => Error::I2c(e),
        }
    }
}

#[derive(Debug, Copy, Clone)]
enum Command {
    /// Measures raw signal
    MeasurementRaw,
    /// Gets chips serial number
    Serial,
    /// Stops the measurement
    HeaterOff,
    /// Build-in self-test. This should be normally needed by any application
    MeasureTest,
    /// Get chipset featureset
    //FeatureSet,
    /// This is I²C wide command resetting all devices connected to the same bus
    SoftReset,
}

impl Command {
    /// Command and the requested delay in ms
    fn as_tuple(self) -> (u16, u32) {
        match self {
            Command::MeasurementRaw => (0x260f, 30),
            Command::Serial => (0x3682, 1),
            Command::HeaterOff => (0x3615, 1),
            Command::MeasureTest => (0x280e, 250),
            //Command::FeatureSet => (0x202f, 1),
            Command::SoftReset => (0x0006, 1),
        }
    }
}

/// Sgp40 driver instance
///
/// Create the driver instance with valid I²C address (0x59) and then it is just
/// rock'n'roll. This driver doesn't require special starting but once can start to
/// make measurements right away. However, the initial values after start-up will
/// unstable so you will want to throw away some of them.
pub struct Sgp40<I2C, D> {
    i2c: I2C,
    address: u8,
    delay: D,
    temperature_offset: i16,
    #[cfg(feature = "voc_index")]
    voc: VocAlgorithm,
}

impl<I2C, D, E> Sgp40<I2C, D>
where
    I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
    D: DelayMs<u32>,
{
    /// Creates Sgp40 driver
    pub fn new(i2c: I2C, address: u8, delay: D) -> Self {
        Sgp40 {
            i2c,
            address,
            delay,
            temperature_offset: 0,
            #[cfg(feature = "voc_index")]
            voc: VocAlgorithm::new(),
        }
    }

    /// Command for reading values from the sensor
    fn delayed_read_cmd(&mut self, cmd: Command, data: &mut [u8]) -> Result<(), Error<E>> {
        self.write_command(cmd)?;
        i2c::read_words_with_crc(&mut self.i2c, self.address, data)?;
        Ok(())
    }

    /// Writes commands with arguments
    fn write_command_with_args(&mut self, cmd: Command, data: &[u8]) -> Result<(), Error<E>> {
        const MAX_TX_BUFFER: usize = 14; //cmd (2 bytes) + max args (12 bytes)

        let mut transfer_buffer = [0; MAX_TX_BUFFER];

        let size = data.len();

        // 2 for command, size of transferred bytes and CRC per each two bytes.
        assert!(size < 2 + size + size / 2);
        let (command, delay) = cmd.as_tuple();

        transfer_buffer[0..2].copy_from_slice(&command.to_be_bytes());

        let mut i = 2;
        for chunk in data.chunks(2) {
            let end = i + 2;
            transfer_buffer[i..end].copy_from_slice(chunk);
            transfer_buffer[end] = crc8::calculate(chunk);
            i += 3;
        }

        self.i2c
            .write(self.address, &transfer_buffer[0..i])
            .map_err(Error::I2c)?;
        self.delay.delay_ms(delay);

        Ok(())
    }

    /// Writes commands without additional arguments.
    fn write_command(&mut self, cmd: Command) -> Result<(), Error<E>> {
        let (command, delay) = cmd.as_tuple();
        i2c::write_command(&mut self.i2c, self.address, command).map_err(Error::I2c)?;
        self.delay.delay_ms(delay);
        Ok(())
    }

    /// Sensor self-test.
    ///
    /// Performs sensor self-test. This is intended for production line and testing and verification only and
    /// shouldn't be needed for normal use.
    pub fn self_test(&mut self) -> Result<&mut Self, Error<E>> {
        const MEASURE_TEST_OK: u16 = 0xd400;
        let mut data = [0; 3];

        self.delayed_read_cmd(Command::MeasureTest, &mut data)?;

        let result = u16::from_be_bytes([data[0], data[1]]);

        if result != MEASURE_TEST_OK {
            Err(Error::SelfTest)
        } else {
            Ok(self)
        }
    }

    /// Turn sensor heater off and places it in idle-mode.
    ///
    /// Stops running the measurements, places heater into idle by turning the heaters off.
    #[inline]
    pub fn turn_heater_off(&mut self) -> Result<&Self, Error<E>> {
        self.write_command(Command::HeaterOff)?;
        Ok(self)
    }

    /// Resets the sensor.
    ///
    /// Executes a reset on the device. The caller must wait 100ms before starting to use the device again.
    #[inline]
    pub fn reset(&mut self) -> Result<&Self, Error<E>> {
        self.write_command(Command::SoftReset)?;
        Ok(self)
    }

    /// Reads the voc index from the sensor.
    ///
    /// Reads VOC index. Driver is using Sensirion proprietary algortihm and it takes minimum
    /// 45 reads to start working. These reads should be made with 1Hz interval to keep the
    /// algoritm working.
    #[cfg(feature = "voc_index")]
    #[inline]
    pub fn measure_voc_index(&mut self) -> Result<u16, Error<E>> {
        let raw = self.measure_raw_with_rht(50000, 25000)?;

        Ok(self.voc.process(raw as i32) as u16)
    }

    /// Reads the voc index from the sensor with humidity and temperature compensation.
    ///
    /// Reads VOC index with humidity and temperature compensation. Both values us milli-notation where
    /// 25°C is equivalent of 25000 and 50% humidity equals 50000.
    ///
    /// Driver is using Sensirion proprietary algortihm and it takes minimum
    /// 45 reads to start working. These reads should be made with 1Hz interval to keep the
    /// algoritm working.
    #[cfg(feature = "voc_index")]
    #[inline]
    pub fn measure_voc_index_with_rht(&mut self, humidity: u16, temperature: i16) -> Result<u16, Error<E>> {
        let raw = self.measure_raw_with_rht(humidity, temperature)?;

        Ok(self.voc.process(raw as i32) as u16)
    }

    /// Reads the raw signal from the sensor.
    ///
    /// Raw signal without temperature and humidity compensation. This is not
    /// VOC index but needs to be processed through different algorithm for that.
    #[inline]
    pub fn measure_raw(&mut self) -> Result<u16, Error<E>> {
        self.measure_raw_with_rht(50000, 25000)
    }

    /// Reads the raw signal from the sensor.
    ///
    /// Raw signal with temperature and humidity compensation. This is not
    /// VOC index but needs to be processed through different algorithm for that.
    pub fn measure_raw_with_rht(&mut self, humidity: u16, temperature: i16) -> Result<u16, Error<E>> {
        let mut data = [0; 3];

        let (hum_ticks, temp_ticks) = self.convert_rht(humidity as u32, temperature as i32);

        let mut params = [0u8; 4];
        params[0..2].copy_from_slice(&hum_ticks.to_be_bytes());
        params[2..4].copy_from_slice(&temp_ticks.to_be_bytes());

        self.write_command_with_args(Command::MeasurementRaw, &params)?;
        i2c::read_words_with_crc(&mut self.i2c, self.address, &mut data)?;

        Ok(u16::from_be_bytes([data[0], data[1]]))
    }

    // Returns tick converted values
    fn convert_rht(&self, humidity: u32, temperature: i32) -> (u16, u16) {
        let mut temperature = temperature;
        let mut humidity = humidity;
        if humidity > 100000 {
            humidity = 100000;
        }

        temperature += self.temperature_offset as i32;

        if temperature < -45000 {
            temperature = -45000;
        } else if temperature > 129760 {
            temperature = 129760;
        }

        /* humidity_sensor_format = humidity / 100000 * 65535;
         * 65535 / 100000 = 0.65535 -> 0.65535 * 2^5 = 20.9712 / 2^10 ~= 671
         */
        let humidity_sensor_format = ((humidity * 671) >> 10) as u16;

        /* temperature_sensor_format[1] = (temperature + 45000) / 175000 * 65535;
         * 65535 / 175000 ~= 0.375 -> 0.375 * 2^3 = 2.996 ~= 3
         */
        let temperature_sensor_format = (((temperature + 45000) * 3) >> 3) as u16;

        (humidity_sensor_format, temperature_sensor_format)
    }

    /// Sets the temperature offset.
    ///
    /// This command sets the temperature offset used for the compensation of subsequent RHT measurements.RawSignals
    /// The parameter provides the temperature offset (in °C) with a scaling factor of 200, e.g., an output of +400 corresponds to +2.00 °C.
    #[inline]
    pub fn set_temperature_offset(&mut self, offset: i16) -> Result<&mut Self, Error<E>> {
        self.temperature_offset += offset;
        Ok(self)
    }

    /// Gets the temperature offset
    ///
    /// Gets the temperature compensation offset issues to the device.
    pub fn get_temperature_offset(&mut self) -> Result<i16, Error<E>> {
        Ok(self.temperature_offset)
    }

    /// Acquires the sensor serial number.
    ///
    /// Sensor serial number is only 48-bits long so the remaining 16-bits are zeros.
    pub fn serial(&mut self) -> Result<u64, Error<E>> {
        let mut serial = [0; 9];

        self.delayed_read_cmd(Command::Serial, &mut serial)?;

        let serial = u64::from(serial[0]) << 40
            | u64::from(serial[1]) << 32
            | u64::from(serial[3]) << 24
            | u64::from(serial[4]) << 16
            | u64::from(serial[6]) << 8
            | u64::from(serial[7]);
        Ok(serial)
    }
}

// Testing is focused on checking the primitive transactions. It is assumed that during
// the real sensor testing, the basic flows in the command structure has been caught.
#[cfg(test)]
mod tests {
    use embedded_hal_mock as hal;

    use self::hal::delay::MockNoop as DelayMock;
    use self::hal::i2c::{Mock as I2cMock, Transaction};
    use super::*;

    const SGP40_ADDR: u8 = 0x59;

    /// Tests that the commands without parameters work
    #[test]
    fn test_basic_command() {
        let (cmd, _) = Command::MeasurementRaw.as_tuple();
        let expectations = [
            Transaction::write(
                SGP40_ADDR,
                [
                    cmd.to_be_bytes().to_vec(),
                    [0x7f, 0xfb, 0x4b, 0x66, 0x8a, 0x2f].to_vec(),
                ]
                .concat(),
            ),
            Transaction::read(SGP40_ADDR, vec![0x12, 0x34, 0x37]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sensor = Sgp40::new(mock, SGP40_ADDR, DelayMock);
        let result = sensor.measure_raw().unwrap();
        assert_eq!(result, 0x1234);
    }

    /// Test the `serial` function
    #[test]
    fn serial() {
        let (cmd, _) = Command::Serial.as_tuple();
        let expectations = [
            Transaction::write(0x58, cmd.to_be_bytes().to_vec()),
            Transaction::read(0x58, vec![0xde, 0xad, 0x98, 0xbe, 0xef, 0x92, 0xde, 0xad, 0x98]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sensor = Sgp40::new(mock, 0x58, DelayMock);
        let serial = sensor.serial().unwrap();
        assert_eq!(serial, 0x00deadbeefdead);
    }

    #[test]
    fn test_crc_error() {
        let (cmd, _) = Command::MeasureTest.as_tuple();
        let expectations = [
            Transaction::write(SGP40_ADDR, cmd.to_be_bytes().to_vec()),
            Transaction::read(SGP40_ADDR, vec![0xD4, 0x00, 0x00]),
        ];
        let mock = I2cMock::new(&expectations);
        let mut sensor = Sgp40::new(mock, SGP40_ADDR, DelayMock);

        match sensor.self_test() {
            Err(Error::Crc) => {}
            Err(_) => panic!("Unexpected error in CRC test"),
            Ok(_) => panic!("Unexpected success in CRC test"),
        }
    }
}