1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#[allow(unused_imports)] // Required for no_std
use num_traits::float::FloatCore;

/// A measurement result from the sensor.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Measurement {
    /// CO₂ equivalent (parts per million, ppm)
    pub co2eq_ppm: u16,
    /// Total Volatile Organic Compounds (parts per billion, ppb)
    pub tvoc_ppb: u16,
}

/// A raw signals result from the sensor.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct RawSignals {
    /// H2 signal
    pub h2: u16,
    /// Ethanol signal
    pub ethanol: u16,
}

/// The baseline values.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Baseline {
    /// CO₂eq baseline
    pub co2eq: u16,
    /// TVOC baseline
    pub tvoc: u16,
}

/// Absolute humidity in g/m³.
///
/// Internally this is represented as a 8.8bit fixed-point number.
///
/// To construct a `Humidity` instance, either use the lossless `new()`
/// constructor, or the lossy `from_f32()` method.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Humidity {
    integer: u8,    // 0-255
    fractional: u8, // 0/256-255/256
}

/// Errors that can occur when constructing a `Humidity` value.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum HumidityError {
    /// A zero value is not allowed in a `Humidity` struct since that will turn
    /// off the temperature compensation.
    ZeroValue,
    /// A value is outside the representable range.
    OutOfRange,
}

impl Humidity {
    /// Create a new `Humidity` instance.
    ///
    /// The humidity should be passed in as a 8.8bit fixed-point number.
    ///
    /// Examples:
    ///
    /// - The pair `(0x00, 0x01)` represents `1/256 g/m³` (0.00390625)
    /// - The pair `(0xFF, 0xFF)` represents `255 g/m³ + 255/256 g/m³` (255.99609375)
    /// - The pair `(0x10, 0x80)` represents `16 g/m³ + 128/256 g/m³` (16.5)
    pub fn new(integer: u8, fractional: u8) -> Result<Self, HumidityError> {
        if integer == 0 && fractional == 0 {
            return Err(HumidityError::ZeroValue);
        }
        Ok(Humidity {
            integer,
            fractional,
        })
    }

    /// Create a new `Humidity` instance from a f32.
    ///
    /// When converting, the fractional part will always be rounded down.
    pub fn from_f32(val: f32) -> Result<Self, HumidityError> {
        if val.is_nan() {
            return Err(HumidityError::OutOfRange);
        }

        let integer = if !(0.0..256.0).contains(&val) {
            return Err(HumidityError::OutOfRange);
        } else {
            val.trunc() as u8
        };

        let fractional_f32 = val.fract() * 256.0f32;
        let fractional = if fractional_f32 > 255.0 {
            255
        } else if fractional_f32 < 0.0 {
            0
        } else {
            fractional_f32 as u8
        };

        Humidity::new(integer, fractional)
    }

    /// Convert this to the binary fixed-point representation expected by the
    /// SGP30 sensor.
    pub fn as_bytes(&self) -> [u8; 2] {
        [self.integer, self.fractional]
    }
}

impl From<Humidity> for f32 {
    /// Convert a `Humidity` instance to a f32.
    fn from(val: Humidity) -> Self {
        f32::from(val.integer) + (f32::from(val.fractional) / 256.0)
    }
}

/// The product types compatible with this driver.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum ProductType {
    /// SGP30
    Sgp30,
    /// Unknown product type
    Unknown(u8),
}

impl ProductType {
    /// Parse the product type.
    pub fn parse(val: u8) -> Self {
        match val {
            0 => ProductType::Sgp30,
            _ => ProductType::Unknown(val),
        }
    }
}

/// The feature set returned by the sensor.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct FeatureSet {
    /// The product type (see [`ProductType`](enum.ProductType.html))
    pub product_type: ProductType,
    /// The product version
    pub product_version: u8,
}

impl FeatureSet {
    /// Parse the two bytes returned by the device.
    pub fn parse(msb: u8, lsb: u8) -> Self {
        FeatureSet {
            product_type: ProductType::parse(msb >> 4),
            product_version: lsb,
        }
    }
}

#[cfg(test)]
mod tests {
    use std::f32;

    use super::*;

    #[test]
    fn humidity_as_bytes() {
        assert_eq!(Humidity::new(0x00, 0x01).unwrap().as_bytes(), [0x00, 0x01]);
        assert_eq!(Humidity::new(0xFF, 0xFF).unwrap().as_bytes(), [0xFF, 0xFF]);
        assert_eq!(Humidity::new(0x10, 0x80).unwrap().as_bytes(), [0x10, 0x80]);
    }

    #[test]
    fn humidity_from_f32_ok() {
        assert_eq!(
            Humidity::from_f32(0.00390625f32),
            Ok(Humidity::new(0x00, 0x01).unwrap())
        );
        assert_eq!(
            Humidity::from_f32(255.99609375f32),
            Ok(Humidity::new(0xFF, 0xFF).unwrap())
        );
        assert_eq!(
            Humidity::from_f32(16.5f32),
            Ok(Humidity::new(0x10, 0x80).unwrap())
        );
        assert_eq!(
            Humidity::from_f32(16.999999f32),
            Ok(Humidity::new(0x10, 0xFF).unwrap())
        );
    }

    #[test]
    fn humidity_from_f32_err() {
        assert_eq!(Humidity::from_f32(-3.0f32), Err(HumidityError::OutOfRange));
        assert_eq!(Humidity::from_f32(0.0f32), Err(HumidityError::ZeroValue));
        assert_eq!(Humidity::from_f32(-0.0f32), Err(HumidityError::ZeroValue));
        assert_eq!(Humidity::from_f32(f32::NAN), Err(HumidityError::OutOfRange));
    }

    #[test]
    fn humidity_into_f32() {
        let float: f32 = Humidity::new(0x00, 0x01).unwrap().into();
        assert_eq!(float, 0.00390625f32);
        let float: f32 = Humidity::new(0xFF, 0xFF).unwrap().into();
        assert_eq!(float, 255.99609375);
        let float: f32 = Humidity::new(0x10, 0x80).unwrap().into();
        assert_eq!(float, 16.5);
    }
}