1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::cache::Cache;
use crate::error::DBError;
use crate::filesystem::{fs_delete, fs_load, fs_save};
use crate::GenericDatabase;
use std::fs::read;

use hashbrown::HashMap;
use rmp_serde::{decode, encode};
use serde::{Deserialize, Serialize};

use std::path::PathBuf;

pub struct CachedDB {
    location: String,
    cache: Cache,
}

impl GenericDatabase for CachedDB {
    fn location(&self) -> &str {
        &self.location
    }
    fn exists(&self, key: &str) -> bool {
        if self.cache.limit.is_some() {
            let mut p = PathBuf::new();
            p.push(&self.location);
            p.push(key);
            p.exists()
        } else {
            self.cache.content.contains_key(key)
        }
    }
    fn save<T>(&mut self, key: &str, value: &T) -> Result<(), DBError>
    where
        for<'de> T: Deserialize<'de> + Serialize + Clone,
    {
        let mut path = PathBuf::new();
        path.push(&self.location());
        path.push(key);
        fs_save(&path, &value)?;

        let k = key.to_owned();

        // Keep track of usage for syncing
        self.cache.add_tracker(k.clone());

        // Put everything on the cache untill it's full. And then start to resync from there
        if !self.cache.full {
            match self.cache.limit {
                Some(limit) => {
                    if self.cache.count.len() == limit {
                        self.cache.full = true
                    }
                }
                None => (),
            }
            self.cache.content.insert(
                k.clone(),
                match encode::to_vec(value) {
                    Ok(v) => v,
                    Err(_) => return Err(DBError::save(&format!("Unable to serialize {}", k))),
                },
            );
        }
        Ok(())
    }
    fn load<T>(&mut self, key: &str) -> Result<T, DBError>
    where
        for<'de> T: Deserialize<'de> + Serialize + Clone,
    {
        // Perform resync once ever X amount of loads
        if self.cache.should_resync() {
            self.cache.timer = 0;
            // Prevent possible saving over index
            self.cache.full = true;

            self.resync();
        }
        self.cache.timer += 1;
        self.cache.increase_use(key);
        match self.cache.content.get(key) {
            None => {
                let mut path = PathBuf::new();
                path.push(&self.location());
                path.push(key);
                match fs_load::<T>(&path) {
                    Ok(v) => Ok(v),
                    Err(e) => Err(e),
                }
            }
            Some(v) => Ok(match decode::from_slice(v) {
                Ok(v) => v,
                Err(e) => return Err(DBError::load(&format!("Unable to decode {} ({})", key, e))),
            }),
        }
    }
    fn delete(&mut self, key: &str) {
        self.cache.content.remove(key);
        self.cache.del_tracker(key);

        let mut path = PathBuf::new();
        path.push(&self.location());
        path.push(key);
        fs_delete(&path);
    }
}

impl CachedDB {
    /// Manually perform a resync of the cache. This will cache the top N most used keys.
    /// This is already run automatically on a schedule.
    pub fn resync(&mut self) {
        let mut pairs = Vec::with_capacity(self.cache.count.len());
        let mut i: usize = 0;
        for (key, value) in &self.cache.count {
            pairs.push((key, value));
            i += 1;
        }

        // Sort by one of tuple
        pairs.sort_by(|(_, a_v), (_, b_v)| b_v.cmp(a_v));

        let mut should_exist: HashMap<&str, ()> = HashMap::new();
        // Iter of those that are supposed to be in new cache
        for (c, (k, _)) in pairs.iter().enumerate() {
            // Stop conditionals
            if c > i {
                break;
            } else if self.cache.limit.is_some() {
                if c >= self.cache.limit.unwrap() {
                    break;
                };
            }

            should_exist.insert(k.clone(), ());
            let value_from_fs = if self.cache.content.contains_key(*k) {
                continue;
            } else {
                let mut path = PathBuf::new();
                path.push(&self.location);
                path.push(*k);
                read(path)
                    .map_err(|e| eprintln!("sfsdb: File and Cache mismatch ({}): {}", *k, e))
                    .unwrap_or_default()
            };
            self.cache
                .content
                .insert(k.clone().to_owned(), value_from_fs);
        }

        // Iter over keys and check if key is not in pairs then delete
        let mut in_cache: Vec<String> = Vec::new();
        for key in self.cache.content.keys() {
            in_cache.push(key.clone());
        }
        for key in in_cache {
            if !should_exist.contains_key(key.as_str()) {
                self.cache.content.remove(&key);
            }
        }
    }
    pub fn new(location: &str, cache_limit: Option<usize>, resync_every: u16) -> Self {
        CachedDB {
            location: String::from(location),
            cache: Cache::new(cache_limit, resync_every),
        }
    }
}