1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
//! # Serializing high-level data types 
//! The following section documents the process of serializing complex high-level data types to i32. 
//! 
//! Using the following method, you can serialize your own custom data structures to i32. For example, want to serialize and deserialize a custom PhotonImage struct? Here's how ...
//! Add serialize_deserialize_u8_i32 dependency in your Cargo.toml file
//! (please note that we have also added serde and bincode for this usage example)
//!
//! ```rust, ignore
//! [dependencies]
//! serialize_deserialize_u8_i32 = "^0.1"
//! serde = { version = "1.0.104", features = ["derive"] }
//! bincode = "1.2.1"
//! ```
//! Add the following code to your application
//! ```rust, ignore
//! use serde::{Deserialize, Serialize};
//! use serialize_deserialize_u8_i32::s_d_u8_i32;
//! use bincode;
//!```
//! Create a high level data type and then serialize and deserialize...
//! ```rust, ignore
//! // Create a high level custom struct
//! #[derive(Serialize, Deserialize, PartialEq, Debug)]
//! struct PhotonImage {
//!     raw_pixels: Vec<u8>,
//!     width: u32,
//!     height: u32,
//! }
//!
//! // Serialize and deserialize
//! ```rust, ignore
//! fn main() {
//!     // Imlement the struct with data
//!     let photon_image = PhotonImage {
//!         raw_pixels: vec![
//!             134, 122, 131, 255, 131, 131, 139, 255, 135, 134, 137, 255, 138, 134, 130, 255, 126,
//!             125, 119, 255, 131, 134, 129, 255, 137, 134, 132, 255, 130, 126, 130, 255, 132, 125,
//!             132, 255, 122, 142, 129, 255, 134, 135, 128, 255, 138, 120, 125, 255, 125, 134, 110,
//!             255, 121, 122, 137, 255, 141, 140, 141, 255, 125, 144, 120, 255,
//!         ],
//!         width: 4,
//!         height: 4,
//!     };
//!     println!("PhotonImage: {:?}", photon_image);
//!     /*
//!     PhotonImage: PhotonImage { raw_pixels: [134, 122, 131, 255, 131, 131, 139, 255, 135, 134, 137, 255, 138, 134, 130, 255, 126, 125, 119, 255, 131, 134, 129, 255, 137, 134, 132, 255, 130, 126, 130, 255, 132, 125, 132, 255, 122, 142, 129, 255, 134, 135, 128, 255, 138, 120, 125, 255, 125, 134, 110, 255, 121, 122, 137, 255, 141, 140, 141, 255, 125, 144, 120, 255], width: 4, height: 4 }
//!     */
//!
//!     // Serialize that to standard u8
//!     let encoded_u8: Vec<u8> = bincode::serialize(&photon_image).unwrap();
//!     println!("As u8: {:?}", encoded_u8);
//!     /*
//!     As u8: [64, 0, 0, 0, 0, 0, 0, 0, 134, 122, 131, 255, 131, 131, 139, 255, 135, 134, 137, 255, 138, 134, 130, 255, 126, 125, 119, 255, 131, 134, 129, 255, 137, 134, 132, 255, 130, 126, 130, 255, 132, 125, 132, 255, 122, 142, 129, 255, 134, 135, 128, 255, 138, 120, 125, 255, 125, 134, 110, 255, 121, 122, 137, 255, 141, 140, 141, 255, 125, 144, 120, 255, 4, 0, 0, 0, 4, 0, 0, 0]
//!     */
//!
//!     // Serialize that to i32
//!     let encoded_i32: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(encoded_u8);
//!     println!("As i32: {:?}", encoded_i32);
//!     /*
//!     As i32: [1064000000, 1000000000, 1000000134, 1122131255, 1131131139, 1255135134, 1137255138, 1134130255, 1126125119, 1255131134, 1129255137, 1134132255, 1130126130, 1255132125, 1132255122, 1142129255, 1134135128, 1255138120, 1125255125, 1134110255, 1121122137, 1255141140, 1141255125, 1144120255, 1004000000, 1000004000, 2000000000]
//!     */
//!
//!     // Deserialize back to u8
//!     let encoded_u8_again: Vec<u8> = s_d_u8_i32::deserialize_i32_to_u8(encoded_i32);
//!     println!("As u8 again: {:?}", encoded_u8_again);
//!     /*
//!     As u8 again: [64, 0, 0, 0, 0, 0, 0, 0, 134, 122, 131, 255, 131, 131, 139, 255, 135, 134, 137, 255, 138, 134, 130, 255, 126, 125, 119, 255, 131, 134, 129, 255, 137, 134, 132, 255, 130, 126, 130, 255, 132, 125, 132, 255, 122, 142, 129, 255, 134, 135, 128, 255, 138, 120, 125, 255, 125, 134, 110, 255, 121, 122, 137, 255, 141, 140, 141, 255, 125, 144, 120, 255, 4, 0, 0, 0, 4, 0, 0, 0]
//!     */
//!
//!     // Deserialize back to Rust
//!     let decoded: PhotonImage = bincode::deserialize(&encoded_u8_again[..]).unwrap();
//!     println!("As PhotonImage again: {:?}", decoded);
//!     /*
//!     As PhotonImage again: PhotonImage { raw_pixels: [134, 122, 131, 255, 131, 131, 139, 255, 135, 134, 137, 255, 138, 134, 130, 255, 126, 125, 119, 255, 131, 134, 129, 255, 137, 134, 132, 255, 130, 126, 130, 255, 132, 125, 132, 255, 122, 142, 129, 255, 134, 135, 128, 255, 138, 120, 125, 255, 125, 134, 110, 255, 121, 122, 137, 255, 141, 140, 141, 255, 125, 144, 120, 255], width: 4, height: 4 }
//!     */
//!```
//!
//! # Serializing u8 to i32 explicitly
//! If you are interested in using a highly performant data model with a minimum of dependencies, please consider the following.
//! As you can see from the examples above, this library can facilitate the storage and retrieval of high-level complex data types in a generic way. 
//! Naturally, this is very simple and easy to use.
//! **You can, however**, go a step further and explicitly encode your data to i32 yourself, ahead of time. Essentially what this means is, instead of creating a generic representation of your data, you can crack your PhotonImage object open (ahead of time) to serialize and store each internal part separately. 
//! 
//! Why would you want to do this? 
//! 
//! So that you can build your intense computation to be more effieicnt. Let me explain.
//! If you [store](https://github.com/second-state/specs/blob/master/storage_interface.md#store-a-custom-struct) your data as a high-leve data type, the application that uses it will have to unpack it. The unpacking is an overhead that your execution may not want. In addition, the inpacking requires dependencies like serde and bincode. 
//! You can still store and load the high level object. Just do that in a different Rust/Wasm executable.
//! If you want maximum efficiency and you have data that qualifies i.e. an array of pixels (`[u8]`) you can store these in such a way that the Wasm VM can natively process them (without any serde & bincode overhead)
//! Here is an example of the discrete application which would just perform pixel processing, with minimal overheads
//! Cargo.toml
//! ```rust, ignore
//! [dependencies]
//! serialize_deserialize_u8_i32 = "^0.1"
//! rust_storage_interface_library = "^0.1"
//! ```
//! Rust/Wasm pixel processing function
//! ```rust, ignore
//! use serialize_deserialize_u8_i32::s_d_u8_i32;
//! use rust_storage_interface_library::ssvm_storage;
//! // Takes the i32 storage key for a specific image, converts the image and returns a new storage key to the newly generated (solarized) image
//! #[no_mangle]
//! pub extern fn solarize_the_pixels(_orig_image_location: i32) -> i32 {
//!     // Load your data from the storage layer (u8 pixels are stored at a compression rate of 3:1)
//!     let i32_vec: Vec<i32> = ssvm_storage::load::load_as_i32_vector(storage_key);
//!     // Quickly convert it to pixel data
//!     let mut individual_pixels: Vec<u8> = s_d_u8_i32::deserialize_i32_to_u8(i32_vec);
//!     // Process each pixel directly inside the VM
//!     for pixel in individual_pixels.iter_mut() {
//!         if 200 as i32 - *pixel as i32 > 0 {
//!             *pixel = 200 - *pixel;
//!         }
//!     }
//!     // Pack the u8 pixels back into i32s (compressing 3:1)
//!     let new_encoded_image: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(individual_pixels);
//!     // Save the solarized image to the storage location and retrieve its storage key
//!     let new_image_storage_key: i32 = ssvm_storage::store::store_as_i32_vector(new_encoded_image);
//!     // Pass the storage key of the solarized image back to the calling code
//!     new_image_storage_key
//! }
//! ```


pub mod s_d_u8_i32 {
    use std::convert::TryInto;

    pub fn exceeding_max_i32_threshold(_num: u64) -> bool {
        let max: u64 = i32::max_value().try_into().unwrap();
        if _num > max {
            true
        } else {
            false
        }
    }

    pub fn count_vec_items_left(_vec: &Vec<u8>) -> u64 {
        let items_left: u64 = _vec.len().try_into().unwrap();
        items_left
    }

    pub fn flush_value_to_zero(_value: u64, _position: u64, _size: u64) -> u64 {
        let new_value: u64 = _value
            - ((_value % (10_u64.pow(_position.try_into().unwrap())))
                - (_value % (10_u64.pow((_position - _size).try_into().unwrap()))));
        new_value
    }

    pub fn insert_value_at_position(
        _value: u64,
        _single_value: u64,
        _position: u64,
        _size: u64,
    ) -> u64 {
        // buffer up the single value to equal size i.e. turn 55 (two digits) into 055 (three digits) where the size is 3 etc.
        let mut string_single_value = _single_value.to_string();
        while string_single_value.len() < (_size as u64).try_into().unwrap() {
            string_single_value = "0".to_owned() + &string_single_value;
        }
        let new_single_value: u64 = string_single_value.parse::<u64>().unwrap();
        let zeroed_value: u64 = flush_value_to_zero(_value, _position, _size);
        let new_value: u64 =
            zeroed_value + new_single_value * (10_u64.pow((_position - _size).try_into().unwrap()));
        new_value
    }

    pub fn access_value(_value: u64, _position: u64, _size: u64) -> u64 {
        let _mode: u64 = ((_value % (10_u64.pow(_position.try_into().unwrap())))
            - (_value % (10_u64.pow((_position - _size).try_into().unwrap()))))
            / (10_u64.pow((_position - _size).try_into().unwrap()));
        _mode
    }

    pub fn serialize_u8_to_i32(u8_data: Vec<u8>) -> Vec<i32> {
        let mut vec_of_i32s: Vec<i32> = Vec::new();
        // Test to see if there are too many i32s to store (we need to store the number of i32s in the first i32 so this can not exceed 2147483647)
        if exceeding_max_i32_threshold(count_vec_items_left(&u8_data).into()) == false {
            let items_left: u64 = count_vec_items_left(&u8_data).try_into().unwrap();
            // Begin processing all of the data into i32s
            let batches_left: u64 = items_left / 3;
            //println!("Batches to process: {:?}", batches_left);
            let last_batch_count: u64 = items_left % 3;
            if batches_left >= 1 {
                for i in 1..=batches_left {
                    //println!("Processing: {:?}", i);
                    // Create a placeholder i32
                    let mut single_value_for_i32_vec: u64 = 1000000000;
                    // Vec position setup
                    let mut n: u64 = 0;
                    if i == 2 {
                        n = 3;
                    } else if i >= 3 {
                        n = i + (i - 1) + (i - 2);
                    }
                    let one: u64 = (*u8_data.get(n as usize).unwrap()).into();
                    //println!("One: {:?}", one);
                    let two: u64 = (*u8_data.get(n as usize + 1).unwrap()).into();
                    //println!("Two: {:?}", two);
                    let three: u64 = (*u8_data.get(n as usize + 2).unwrap()).into();
                    //println!("Three: {:?}", three);
                    //single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 9, 3);
                    single_value_for_i32_vec =
                        insert_value_at_position(single_value_for_i32_vec, one as u64, 9, 3);
                    //single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 6, 3);
                    single_value_for_i32_vec =
                        insert_value_at_position(single_value_for_i32_vec, two as u64, 6, 3);
                    //single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 3, 3);
                    single_value_for_i32_vec =
                        insert_value_at_position(single_value_for_i32_vec, three as u64, 3, 3);
                    vec_of_i32s.push(single_value_for_i32_vec.try_into().unwrap());
                }
            }
            let mut index: usize = 0;
            if batches_left == 0 {
                index = 0;
            } else if batches_left == 1 {
                index = 3;
            } else if batches_left >= 2 {
                index = (batches_left as usize + 3) + (batches_left as usize - 1) + (batches_left as usize - 2);
            }
            // See how many items we have left in the serialised Vec<u8>
            if last_batch_count == 1 {
                // Create a placeholder i32
                let mut single_value_for_i32_vec: u64 = 1000000000;

                let one: u64 = (*u8_data.get(index).unwrap()).into();
                //println!("One: {:?}", one);
                //single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 3, 3);
                single_value_for_i32_vec =
                    insert_value_at_position(single_value_for_i32_vec, one as u64, 3, 3);
                // Set the indicator to 3
                single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 10, 1);
                // A single u8 stored in a single i32 will have a prefix of 3 - this is a code used in encoding/decoding
                single_value_for_i32_vec =
                    insert_value_at_position(single_value_for_i32_vec, 0, 10, 1);
                // Push this new i32 to the vec_of_i32s
                vec_of_i32s.push(single_value_for_i32_vec.try_into().unwrap());
            }
            if last_batch_count == 2 {
                // Create a placeholder i32
                let mut single_value_for_i32_vec: u64 = 1000000000;
                let one: u64 = (*u8_data.get(index).unwrap()).into();
                //println!("One: {:?}", one);
                let two: u64 = (*u8_data.get(index + 1).unwrap()).into();
                //println!("Two: {:?}", two);
                //single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 6, 3);
                single_value_for_i32_vec =
                    insert_value_at_position(single_value_for_i32_vec, one as u64, 6, 3);
                //single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 3, 3);
                single_value_for_i32_vec =
                    insert_value_at_position(single_value_for_i32_vec, two as u64, 3, 3);
                // Set the indicator to 2
                single_value_for_i32_vec = flush_value_to_zero(single_value_for_i32_vec, 10, 1);
                // When two u8s are stored in a single i32 it will have a prefix of 2 - this is a code used in encoding/decoding
                single_value_for_i32_vec =
                    insert_value_at_position(single_value_for_i32_vec, 2, 10, 1);
                // Push this new i32 to the vec_of_i32s
                vec_of_i32s.push(single_value_for_i32_vec.try_into().unwrap());
            }
        }
        vec_of_i32s
    }

    pub fn deserialize_i32_to_u8(_i32_data: Vec<i32>) -> Vec<u8> {
        let mut vec_of_u8s: Vec<u8> = Vec::new();
        for single_i32_from_vec in _i32_data {
            println!("Processing: {:?}", single_i32_from_vec);
            let mode: u64 = access_value(single_i32_from_vec as u64, 10, 1);
            //println!("Mode: {:?}", mode);
            if mode == 1 {
                vec_of_u8s.push(
                    access_value(single_i32_from_vec as u64, 9, 3)
                        .try_into()
                        .unwrap(),
                );
                vec_of_u8s.push(
                    access_value(single_i32_from_vec as u64, 6, 3)
                        .try_into()
                        .unwrap(),
                );
                vec_of_u8s.push(
                    access_value(single_i32_from_vec as u64, 3, 3)
                        .try_into()
                        .unwrap(),
                );
            }
            if mode == 2 {
                vec_of_u8s.push(
                    access_value(single_i32_from_vec as u64, 6, 3)
                        .try_into()
                        .unwrap(),
                );
                vec_of_u8s.push(
                    access_value(single_i32_from_vec as u64, 3, 3)
                        .try_into()
                        .unwrap(),
                );
            }
            // It is impossible for the other cases (which start with 1 or 2) to be less than or equal to 255. This will still work even if the 0000000000 -> 0000000255 gets appended to 0 -> 255
            if mode == 0 || single_i32_from_vec <= 255 {
                vec_of_u8s.push(
                    access_value(single_i32_from_vec as u64, 3, 3)
                        .try_into()
                        .unwrap(),
                );
            }
        }
        vec_of_u8s
    }
}

#[cfg(test)]
mod tests {
    use super::s_d_u8_i32;
    #[test]
    fn test_flush_3_3_000() {
        let _test_single_value_for_i32_vec_000: u64 = 1000000000;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_000, 3, 3);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_3_3_123() {
        let _test_single_value_for_i32_vec_123: u64 = 1000000123;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_123, 3, 3);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_3_3_999() {
        let _test_single_value_for_i32_vec_999: u64 = 1000000999;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_999, 3, 3);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_6_6_000() {
        let _test_single_value_for_i32_vec_000: u64 = 1000000000;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_000, 6, 6);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_6_6_123() {
        let _test_single_value_for_i32_vec_123: u64 = 1000123123;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_123, 6, 6);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_6_6_999() {
        let _test_single_value_for_i32_vec_999: u64 = 1000999999;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_999, 6, 6);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_9_9_000() {
        let _test_single_value_for_i32_vec_000: u64 = 1000000000;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_000, 9, 9);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_6_3_999() {
        let _test_single_value_for_i32_vec_999: u64 = 1999999999;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_999, 6, 3);
        assert_eq!(v, 1999000999);
    }
    #[test]
    fn test_flush_9_3_999() {
        let _test_single_value_for_i32_vec_000: u64 = 1999000000;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_000, 9, 3);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_9_9_123() {
        let _test_single_value_for_i32_vec_123: u64 = 1123123123;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_123, 9, 9);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_flush_9_9_999() {
        let _test_single_value_for_i32_vec_999: u64 = 1999999999;
        let v = s_d_u8_i32::flush_value_to_zero(_test_single_value_for_i32_vec_999, 9, 9);
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_access_3_3_1() {
        let _test_single_value_for_i32_vec_000: u64 = 1009010011;
        let v = s_d_u8_i32::access_value(_test_single_value_for_i32_vec_000, 10, 1);
        assert_eq!(v, 1);
    }
    #[test]
    fn test_access_3_3_123() {
        let _test_single_value_for_i32_vec_123: u64 = 1123123123;
        let v = s_d_u8_i32::access_value(_test_single_value_for_i32_vec_123, 3, 3);
        assert_eq!(v, 123);
    }
    #[test]
    fn test_access_3_3_999() {
        let _test_single_value_for_i32_vec_999: u64 = 1999999999;
        let v = s_d_u8_i32::access_value(_test_single_value_for_i32_vec_999, 3, 3);
        assert_eq!(v, 999);
    }
    #[test]
    fn test_insert_3_3_000() {
        let _test_single_value_for_i32_vec_000: u64 = 1000000000;
        let _single_val: u64 = 000;
        let v = s_d_u8_i32::insert_value_at_position(
            _test_single_value_for_i32_vec_000,
            _single_val,
            3,
            3,
        );
        assert_eq!(v, 1000000000);
    }
    #[test]
    fn test_insert_3_3_123() {
        let _test_single_value_for_i32_vec_123: u64 = 1123123000;
        let _single_val: u64 = 123;
        let v = s_d_u8_i32::insert_value_at_position(
            _test_single_value_for_i32_vec_123,
            _single_val,
            3,
            3,
        );
        assert_eq!(v, 1123123123);
    }
    #[test]
    fn test_insert_3_3_999() {
        let _test_single_value_for_i32_vec_999: u64 = 1999999009;
        let _single_val: u64 = 999;
        let v = s_d_u8_i32::insert_value_at_position(
            _test_single_value_for_i32_vec_999,
            _single_val,
            3,
            3,
        );
        assert_eq!(v, 1999999999);
    }
    #[test]
    fn test_insert_9_9_111() {
        let _test_single_value_for_i32_vec_999: u64 = 1999999999;
        let _single_val: u64 = 111;
        let v = s_d_u8_i32::insert_value_at_position(
            _test_single_value_for_i32_vec_999,
            _single_val,
            9,
            3,
        );
        assert_eq!(v, 1111999999);
    }
    #[test]
    fn test_i32_threshold_over() {
        let number: u64 = 2147483648;
        let b = s_d_u8_i32::exceeding_max_i32_threshold(number);
        assert_eq!(b, true);
    }
    #[test]
    fn test_i32_threshold_under() {
        let number: u64 = 2147483647;
        let b = s_d_u8_i32::exceeding_max_i32_threshold(number);
        assert_eq!(b, false);
    }
    #[test]
    fn test_count_vec_items_left() {
        let mut vec = Vec::with_capacity(10);
        for i in 0..10 {
            vec.push(i);
        }
        let items_left: u64 = s_d_u8_i32::count_vec_items_left(&vec);
        assert_eq!(items_left, 10);
    }
    #[test]
    fn test_serialize_u8_to_i32_one() {
        let mut vec: Vec<u8> = Vec::new();
        for i in 1..=3 {
            vec.push(i);
        }
        // Creates
        // [1, 2, 3]

        // Expected result
        // [1001002003]
        let mut a: Vec<i32> = Vec::new();
        a.push(1001002003);

        // Actual result (check to see if a and v match)
        let v: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(vec);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        assert_eq!(matching, 1);
    }

    #[test]
    fn test_serialize_u8_to_i32_two() {
        let mut vec: Vec<u8> = Vec::new();
        for i in 1..=6 {
            vec.push(i);
        }
        // Creates
        // [1, 2, 3, 4, 5, 6]

        // Expected result
        // [1001002003, 1004005006]
        let mut a: Vec<i32> = Vec::new();
        a.push(1001002003);
        a.push(1004005006);

        // Actual result (check to see if a and v match)
        let v: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(vec);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 2);
    }

    #[test]
    fn test_serialize_u8_to_i32_three() {
        let mut vec: Vec<u8> = Vec::new();
        for i in 99..=105 {
            vec.push(i);
        }
        // Creates
        // [99, 100, 101, 102, 103, 104, 105]

        // Expected result
        // [1099100101, 1102103104, 0000000105]
        let mut a: Vec<i32> = Vec::new();
        a.push(1099100101);
        a.push(1102103104);
        a.push(0000000105);

        // Actual result (check to see if a and v match)
        let v: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(vec);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 3);
    }

    #[test]
    fn test_serialize_u8_to_i32_four() {
        let mut vec: Vec<u8> = Vec::new();
        for i in 99..=106 {
            vec.push(i);
        }
        // Creates
        // [99, 100, 101, 102, 103, 104, 105, 106]

        // Expected result
        // [1099100101, 1102103104, 2000105106]
        let mut a: Vec<i32> = Vec::new();
        a.push(1099100101);
        a.push(1102103104);
        a.push(2000105106);

        // Actual result (check to see if a and v match)
        let v: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(vec);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 3);
    }

    #[test]
    fn test_serialize_u8_to_i32_five() {
        let mut vec: Vec<u8> = Vec::new();
        for i in 9..=16 {
            vec.push(i);
        }
        // Creates
        // [9, 10, 11, 12, 13, 14, 15, 16]

        // Expected result
        // [1009010011, 1012013014, 2000015016]
        let mut a: Vec<i32> = Vec::new();
        a.push(1009010011);
        a.push(1012013014);
        a.push(2000015016);

        // Actual result (check to see if a and v match)
        let v: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(vec);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 3);
    }

    #[test]
    fn test_serialize_u8_to_i32_six() {
        let mut vec: Vec<u8> = Vec::new();
        vec.push(1);
        // Creates
        // [1]

        // Expected result
        // [0000000001]
        let mut a: Vec<i32> = Vec::new();
        a.push(0000000001);

        // Actual result (check to see if a and v match)
        let v: Vec<i32> = s_d_u8_i32::serialize_u8_to_i32(vec);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 1);
    }

    #[test]
    fn test_deserialize_i32_to_u8_one() {
        let mut vec: Vec<i32> = Vec::new();
        vec.push(1009010011);
        vec.push(1012013014);
        vec.push(2000015016);
        println!("vec: {:?}", vec);

        // Expected result
        let mut a: Vec<u8> = Vec::new();
        a.push(9);
        a.push(10);
        a.push(11);
        a.push(12);
        a.push(13);
        a.push(14);
        a.push(15);
        a.push(16);
        println!("a: {:?}", a);

        // Actual result (check to see if a and v match)
        let v: Vec<u8> = s_d_u8_i32::deserialize_i32_to_u8( vec);
        println!("v: {:?}", v);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 8);
    }

    #[test]
    fn test_deserialize_i32_to_u8_two() {
        let mut vec: Vec<i32> = Vec::new();
        vec.push(0000000001);

        // Expected result
        let mut a: Vec<u8> = Vec::new();
        a.push(1);
        println!("a: {:?}", a);

        // Actual result (check to see if a and v match)
        let v: Vec<u8> = s_d_u8_i32::deserialize_i32_to_u8( vec);
        println!("v: {:?}", v);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two thatboth match - success
        assert_eq!(matching, 1);
    }

    #[test]
    fn test_deserialize_i32_to_u8_three() {
        let mut vec: Vec<i32> = Vec::new();
        vec.push(1009010011);
        vec.push(1012013014);
        println!("vec: {:?}", vec);

        // Expected result
        let mut a: Vec<u8> = Vec::new();
        a.push(9);
        a.push(10);
        a.push(11);
        a.push(12);
        a.push(13);
        a.push(14);
        println!("a: {:?}", a);

        // Actual result (check to see if a and v match)
        let v: Vec<u8> = s_d_u8_i32::deserialize_i32_to_u8(vec);
        println!("v: {:?}", v);
        let matching = a.iter().zip(&v).filter(|&(a, v)| a == v).count();
        println!("{:?} vs {:?}", a, v);
        // There are two that both match - success
        assert_eq!(matching, 6);
    }
}