1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use super::*;

/// SLIP decode context
pub struct Decoder {
    header_found: bool,
    esc_seq: [u8; 4],
    esc_seq_len: usize,
}

impl Decoder {
    /// Create a new context for SLIP decoding
    pub fn new() -> Self {
        Decoder {
            header_found: false,
            esc_seq: [0; 4],
            esc_seq_len: 0,
        }
    }

    /// SLIP decode the input slice into the output slice.
    ///
    /// This returns the number of bytes processed, an output slice and an indication of
    /// the end of the packet.
    pub fn decode<'a>(&mut self, input: &'a [u8], output: &'a mut [u8])
        -> Result<(usize, &'a [u8], bool)>
    {
        let input_len = input.len();
        let mut stream = input;
        if !self.header_found {
            stream = self.decode_header(stream)?;
        }
        let res = self.decode_stream(stream, output)?;

        Ok((input_len - res.0.len(), res.1, res.2))
    }

    /// Either process the header successfully or return an error
    fn decode_header<'a>(&mut self, input: &'a [u8]) -> Result<&'a [u8]> {
        if input.len() < 1 {
            // TODO: decode partial headers! For now, just error out...
            return Err(Error::BadHeaderDecode);
        }

        if input[0] != END {
            return Err(Error::BadHeaderDecode);
        }
        self.header_found = true;

        Ok(&input[1..])
    }

    /// Core stream processing
    fn decode_stream<'a>(&mut self, input: &'a [u8], output: &'a mut [u8])
        -> Result<(&'a [u8], &'a [u8], bool)>
    {
        let mut in_byte = 0;
        let mut out_byte = 0;
        let mut end = false;

        loop {
            if in_byte == input.len() || out_byte == output.len() {
                break;
            }

            if self.esc_seq_len > 0 {
                match input[in_byte] {
                    ESC_END => {
                        output[out_byte] = END
                    }
                    ESC_ESC => {
                        output[out_byte] = ESC
                    }
                    _ => return Err(Error::BadEscapeSequenceDecode),
                }
                out_byte += 1;
                self.esc_sequence_empty();
            } else {
                match input[in_byte] {
                    ESC => {
                        self.esc_sequence_push(ESC);
                    }
                    END => {
                        in_byte += 1;
                        end = true;
                        break;
                    }
                    _ => {
                        output[out_byte] = input[in_byte];
                        out_byte += 1;
                    }
                }
            }
            in_byte += 1;
        }

        Ok((&input[in_byte..], &output[..out_byte], end))
    }

    /// Push a byte onto the escape sequence
    fn esc_sequence_push(&mut self, byte: u8) {
        self.esc_seq[self.esc_seq_len] = byte;
        self.esc_seq_len += 1;
    }

    /// Reset the escape sequence
    fn esc_sequence_empty(&mut self) {
        self.esc_seq_len = 0;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn empty_decode() {
        const INPUT: [u8; 2] = [0xc0, 0xc0];
        let mut output: [u8; 32] = [0; 32];

        let mut slip = Decoder::new();
        let res = slip.decode(&INPUT, &mut output).unwrap();
        assert_eq!(INPUT.len(), res.0);
        assert_eq!(&[0;0], res.1);
        assert_eq!(true, res.2);
    }

    #[test]
    fn simple_decode() {
        const INPUT: [u8; 7] = [0xc0, 0x01, 0x02, 0x03, 0x04, 0x05, 0xc0];
        const DATA: [u8; 5] = [0x01, 0x02, 0x03, 0x04, 0x05];
        let mut output: [u8; 32] = [0; 32];

        let mut slip = Decoder::new();
        let res = slip.decode(&INPUT, &mut output).unwrap();
        assert_eq!(INPUT.len(), res.0);
        assert_eq!(&DATA, res.1);
        assert_eq!(true, res.2);
    }

    /// Ensure that [ESC, ESC_END] -> [END]
    #[test]
    fn decode_esc_then_esc_end_sequence() {
        const INPUT: [u8; 6] = [0xc0, 0x01, 0xdb, 0xdc, 0x03, 0xc0];
        const DATA: [u8; 3] = [0x01, 0xc0, 0x03];
        let mut output: [u8; 200] = [0; 200];

        let mut slip = Decoder::new();
        let res = slip.decode(&INPUT, &mut output).unwrap();
        assert_eq!(INPUT.len(), res.0);
        assert_eq!(&DATA, res.1);
        assert_eq!(true, res.2);
    }

    /// Ensure that [ESC, ESC_ESC] -> [ESC]
    #[test]
    fn decode_esc_then_esc_esc_sequence() {
        const INPUT: [u8; 6] = [0xc0, 0x01, 0xdb, 0xdd, 0x03, 0xc0];
        const DATA: [u8; 3] = [0x01, 0xdb, 0x03];
        let mut output: [u8; 200] = [0; 200];

        let mut slip = Decoder::new();
        let res = slip.decode(&INPUT, &mut output).unwrap();
        assert_eq!(INPUT.len(), res.0);
        assert_eq!(&DATA, res.1);
        assert_eq!(true, res.2);
    }

    #[test]
    fn multi_part_decode() {
        const INPUT_1: [u8; 6] = [0xc0, 0x01, 0x02, 0x03, 0x04, 0x05];
        const INPUT_2: [u8; 6] = [0x05, 0x06, 0x07, 0x08, 0x09, 0xc0];
        const DATA_1: [u8; 5] = [0x01, 0x02, 0x03, 0x04, 0x05];
        const DATA_2: [u8; 5] = [0x05, 0x06, 0x07, 0x08, 0x09];
        let mut output: [u8; 200] = [0; 200];

        let mut slip = Decoder::new();
        let mut offset = 0;
        {
            let res = slip.decode(&INPUT_1, &mut output[offset..]).unwrap();
            assert_eq!(INPUT_1.len(), res.0);
            assert_eq!(&DATA_1, res.1);
            assert_eq!(false, res.2);
            offset += res.1.len();
        }
        {
            let res = slip.decode(&INPUT_2, &mut output[offset..]).unwrap();
            assert_eq!(INPUT_2.len(), res.0);
            assert_eq!(&DATA_2, res.1);
            assert_eq!(true, res.2);
            offset += res.1.len();
        }
        assert_eq!(10, offset);
    }
}