1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
pub(crate) mod duration;

use crate::prelude::*;

/// Re-Implementation of `serde::private::de::size_hint::cautious`
#[cfg(feature = "alloc")]
#[inline]
pub(crate) fn size_hint_cautious(hint: Option<usize>) -> usize {
    core::cmp::min(hint.unwrap_or(0), 4096)
}

pub(crate) const NANOS_PER_SEC: u32 = 1_000_000_000;
// pub(crate) const NANOS_PER_MILLI: u32 = 1_000_000;
// pub(crate) const NANOS_PER_MICRO: u32 = 1_000;
// pub(crate) const MILLIS_PER_SEC: u64 = 1_000;
// pub(crate) const MICROS_PER_SEC: u64 = 1_000_000;

pub(crate) struct MapIter<'de, A, K, V> {
    pub(crate) access: A,
    marker: PhantomData<(&'de (), K, V)>,
}

impl<'de, A, K, V> MapIter<'de, A, K, V> {
    #[cfg(feature = "alloc")]
    pub(crate) fn new(access: A) -> Self
    where
        A: MapAccess<'de>,
    {
        Self {
            access,
            marker: PhantomData,
        }
    }
}

impl<'de, A, K, V> Iterator for MapIter<'de, A, K, V>
where
    A: MapAccess<'de>,
    K: Deserialize<'de>,
    V: Deserialize<'de>,
{
    type Item = Result<(K, V), A::Error>;

    fn next(&mut self) -> Option<Self::Item> {
        self.access.next_entry().transpose()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match self.access.size_hint() {
            Some(size) => (size, Some(size)),
            None => (0, None),
        }
    }
}

pub(crate) struct SeqIter<'de, A, T> {
    access: A,
    marker: PhantomData<(&'de (), T)>,
}

impl<'de, A, T> SeqIter<'de, A, T> {
    pub(crate) fn new(access: A) -> Self
    where
        A: SeqAccess<'de>,
    {
        Self {
            access,
            marker: PhantomData,
        }
    }
}

impl<'de, A, T> Iterator for SeqIter<'de, A, T>
where
    A: SeqAccess<'de>,
    T: Deserialize<'de>,
{
    type Item = Result<T, A::Error>;

    fn next(&mut self) -> Option<Self::Item> {
        self.access.next_element().transpose()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match self.access.size_hint() {
            Some(size) => (size, Some(size)),
            None => (0, None),
        }
    }
}

pub(crate) fn duration_as_secs_f64(dur: &Duration) -> f64 {
    (dur.as_secs() as f64) + (dur.subsec_nanos() as f64) / (NANOS_PER_SEC as f64)
}

pub(crate) fn duration_signed_from_secs_f64(secs: f64) -> Result<DurationSigned, &'static str> {
    const MAX_NANOS_F64: f64 = ((u64::max_value() as u128 + 1) * (NANOS_PER_SEC as u128)) as f64;
    // TODO why are the seconds converted to nanoseconds first?
    // Does it make sense to just truncate the value?
    let mut nanos = secs * (NANOS_PER_SEC as f64);
    if !nanos.is_finite() {
        return Err("got non-finite value when converting float to duration");
    }
    if nanos >= MAX_NANOS_F64 {
        return Err("overflow when converting float to duration");
    }
    let mut sign = self::duration::Sign::Positive;
    if nanos < 0.0 {
        nanos = -nanos;
        sign = self::duration::Sign::Negative;
    }
    let nanos = nanos as u128;
    Ok(self::duration::DurationSigned::new(
        sign,
        (nanos / (NANOS_PER_SEC as u128)) as u64,
        (nanos % (NANOS_PER_SEC as u128)) as u32,
    ))
}

/// Collect an array of a fixed size from an iterator.
///
/// # Safety
/// The code follow exactly the pattern of initializing an array element-by-element from the standard library.
/// <https://doc.rust-lang.org/nightly/std/mem/union.MaybeUninit.html#initializing-an-array-element-by-element>
pub(crate) fn array_from_iterator<I, T, E, const N: usize>(
    mut iter: I,
    expected: &dyn Expected,
) -> Result<[T; N], E>
where
    I: Iterator<Item = Result<T, E>>,
    E: DeError,
{
    use core::mem::MaybeUninit;

    fn drop_array_elems<T, const N: usize>(num: usize, mut arr: [MaybeUninit<T>; N]) {
        arr[..num].iter_mut().for_each(|elem| {
            // TODO This would be better with assume_init_drop nightly function
            // https://github.com/rust-lang/rust/issues/63567
            unsafe { core::ptr::drop_in_place(elem.as_mut_ptr()) };
        });
    }

    // Create an uninitialized array of `MaybeUninit`. The `assume_init` is
    // safe because the type we are claiming to have initialized here is a
    // bunch of `MaybeUninit`s, which do not require initialization.
    //
    // TODO could be simplified with nightly maybe_uninit_uninit_array feature
    // https://doc.rust-lang.org/nightly/std/mem/union.MaybeUninit.html#method.uninit_array
    let mut arr: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };

    // Dropping a `MaybeUninit` does nothing. Thus using raw pointer
    // assignment instead of `ptr::write` does not cause the old
    // uninitialized value to be dropped. Also if there is a panic during
    // this loop, we have a memory leak, but there is no memory safety
    // issue.
    for (idx, elem) in arr[..].iter_mut().enumerate() {
        *elem = match iter.next() {
            Some(Ok(value)) => MaybeUninit::new(value),
            Some(Err(err)) => {
                drop_array_elems(idx, arr);
                return Err(err);
            }
            None => {
                drop_array_elems(idx, arr);
                return Err(DeError::invalid_length(idx, expected));
            }
        };
    }

    // Everything is initialized. Transmute the array to the
    // initialized type.
    // A normal transmute is not possible because of:
    // https://github.com/rust-lang/rust/issues/61956
    Ok(unsafe { core::mem::transmute_copy::<_, [T; N]>(&arr) })
}