1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//! CBOR and serialization.
//!
//! # Usage
//!
//! Serde CBOR supports Rust 1.40 and up. Add this to your `Cargo.toml`:
//! ```toml
//! [dependencies]
//! serde_cbor = "0.10"
//! ```
//!
//! Storing and loading Rust types is easy and requires only
//! minimal modifications to the program code.
//!
//! ```rust
//! use serde_derive::{Deserialize, Serialize};
//! use std::error::Error;
//! use std::fs::File;
//!
//! // Types annotated with `Serialize` can be stored as CBOR.
//! // To be able to load them again add `Deserialize`.
//! #[derive(Debug, Serialize, Deserialize)]
//! struct Mascot {
//!     name: String,
//!     species: String,
//!     year_of_birth: u32,
//! }
//!
//! fn main() -> Result<(), Box<dyn Error>> {
//!     let ferris = Mascot {
//!         name: "Ferris".to_owned(),
//!         species: "crab".to_owned(),
//!         year_of_birth: 2015,
//!     };
//!
//!     let ferris_file = File::create("examples/ferris.cbor")?;
//!     // Write Ferris to the given file.
//!     // Instead of a file you can use any type that implements `io::Write`
//!     // like a HTTP body, database connection etc.
//!     serde_cbor::to_writer(ferris_file, &ferris)?;
//!
//!     let tux_file = File::open("examples/tux.cbor")?;
//!     // Load Tux from a file.
//!     // Serde CBOR performs roundtrip serialization meaning that
//!     // the data will not change in any way.
//!     let tux: Mascot = serde_cbor::from_reader(tux_file)?;
//!
//!     println!("{:?}", tux);
//!     // prints: Mascot { name: "Tux", species: "penguin", year_of_birth: 1996 }
//!
//!     Ok(())
//! }
//! ```
//!
//! There are a lot of options available to customize the format.
//! To operate on untyped CBOR values have a look at the `Value` type.
//!
//! # Type-based Serialization and Deserialization
//! Serde provides a mechanism for low boilerplate serialization & deserialization of values to and
//! from CBOR via the serialization API. To be able to serialize a piece of data, it must implement
//! the `serde::Serialize` trait. To be able to deserialize a piece of data, it must implement the
//! `serde::Deserialize` trait. Serde provides an annotation to automatically generate the
//! code for these traits: `#[derive(Serialize, Deserialize)]`.
//!
//! The CBOR API also provides an enum `serde_cbor::Value`.
//!
//! # Packed Encoding
//! When serializing structs or enums in CBOR the keys or enum variant names will be serialized
//! as string keys to a map. Especially in embedded environments this can increase the file
//! size too much. In packed encoding all struct keys, as well as any enum variant that has no data,
//! will be serialized as variable sized integers. The first 24 entries in any struct consume only a
//! single byte!  Packed encoding uses serde's preferred [externally tagged enum
//! format](https://serde.rs/enum-representations.html) and therefore serializes enum variant names
//! as string keys when that variant contains data.  So, in the packed encoding example, `FirstVariant`
//! encodes to a single byte, but encoding `SecondVariant` requires 16 bytes.
//!
//! To serialize a document in this format use `Serializer::new(writer).packed_format()` or
//! the shorthand `ser::to_vec_packed`. The deserialization works without any changes.
//!
//! If you would like to omit the enum variant encoding for all variants, including ones that
//! contain data, you can add `legacy_enums()` in addition to `packed_format()`, as can seen
//! in the Serialize using minimal encoding example.
//!
//! # Self describing documents
//! In some contexts different formats are used but there is no way to declare the format used
//! out of band. For this reason CBOR has a magic number that may be added before any document.
//! Self describing documents are created with `serializer.self_describe()`.
//!
//! # Examples
//! Read a CBOR value that is known to be a map of string keys to string values and print it.
//!
//! ```rust
//! use std::collections::BTreeMap;
//! use serde_cbor::from_slice;
//!
//! let slice = b"\xa5aaaAabaBacaCadaDaeaE";
//! let value: BTreeMap<String, String> = from_slice(slice).unwrap();
//! println!("{:?}", value); // {"e": "E", "d": "D", "a": "A", "c": "C", "b": "B"}
//! ```
//!
//! Read a general CBOR value with an unknown content.
//!
//! ```rust
//! use serde_cbor::from_slice;
//! use serde_cbor::value::Value;
//!
//! let slice = b"\x82\x01\xa1aaab";
//! let value: Value = from_slice(slice).unwrap();
//! println!("{:?}", value); // Array([U64(1), Object({String("a"): String("b")})])
//! ```
//!
//! Serialize an object.
//!
//! ```rust
//! use std::collections::BTreeMap;
//! use serde_cbor::to_vec;
//!
//! let mut programming_languages = BTreeMap::new();
//! programming_languages.insert("rust", vec!["safe", "concurrent", "fast"]);
//! programming_languages.insert("python", vec!["powerful", "friendly", "open"]);
//! programming_languages.insert("js", vec!["lightweight", "interpreted", "object-oriented"]);
//! let encoded = to_vec(&programming_languages);
//! assert_eq!(encoded.unwrap().len(), 103);
//! ```
//!
//! Deserializing data in the middle of a slice
//! ```
//! # extern crate serde_cbor;
//! use serde_cbor::Deserializer;
//!
//! # fn main() {
//! let data: Vec<u8> = vec![
//!     0x66, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72, 0x66, 0x66, 0x6f, 0x6f, 0x62,
//!     0x61, 0x72,
//! ];
//! let mut deserializer = Deserializer::from_slice(&data);
//! let value: &str = serde::de::Deserialize::deserialize(&mut deserializer)
//!     .unwrap();
//! let rest = &data[deserializer.byte_offset()..];
//! assert_eq!(value, "foobar");
//! assert_eq!(rest, &[0x66, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72]);
//! # }
//! ```
//!
//! Serialize using packed encoding
//!
//! ```rust
//! use serde_derive::{Deserialize, Serialize};
//! use serde_cbor::ser::to_vec_packed;
//! use WithTwoVariants::*;
//!
//! #[derive(Debug, Serialize, Deserialize)]
//! enum WithTwoVariants {
//!     FirstVariant,
//!     SecondVariant(u8),
//! }
//!
//! let cbor = to_vec_packed(&FirstVariant).unwrap();
//! assert_eq!(cbor.len(), 1);
//!
//! let cbor = to_vec_packed(&SecondVariant(0)).unwrap();
//! assert_eq!(cbor.len(), 16); // Includes 13 bytes of "SecondVariant"
//! ```
//!
//! Serialize using minimal encoding
//!
//! ```rust
//! use serde_derive::{Deserialize, Serialize};
//! use serde_cbor::{Result, Serializer, ser::{self, IoWrite}};
//! use WithTwoVariants::*;
//!
//! fn to_vec_minimal<T>(value: &T) -> Result<Vec<u8>>
//! where
//!     T: serde::Serialize,
//! {
//!     let mut vec = Vec::new();
//!     value.serialize(&mut Serializer::new(&mut IoWrite::new(&mut vec)).packed_format().legacy_enums())?;
//!     Ok(vec)
//! }
//!
//! #[derive(Debug, Serialize, Deserialize)]
//! enum WithTwoVariants {
//!     FirstVariant,
//!     SecondVariant(u8),
//! }
//!
//! let cbor = to_vec_minimal(&FirstVariant).unwrap();
//! assert_eq!(cbor.len(), 1);
//!
//! let cbor = to_vec_minimal(&SecondVariant(0)).unwrap();
//! assert_eq!(cbor.len(), 3);
//! ```
//!
//! # `no-std` support
//!
//! Serde CBOR supports building in a `no_std` context, use the following lines
//! in your `Cargo.toml` dependencies:
//! ``` toml
//! [dependencies]
//! serde = { version = "1.0", default-features = false }
//! serde_cbor = { version = "0.10", default-features = false }
//! ```
//!
//! Without the `std` feature the functions [from_reader], [from_slice], [to_vec], and [to_writer]
//! are not exported. To export [from_slice] and [to_vec] enable the `alloc` feature. The `alloc`
//! feature uses the [`alloc` library][alloc-lib] and requires at least version 1.36.0 of Rust.
//!
//! [alloc-lib]: https://doc.rust-lang.org/alloc/
//!
//! *Note*: to use derive macros in serde you will need to declare `serde`
//! dependency like so:
//! ``` toml
//! serde = { version = "1.0", default-features = false, features = ["derive"] }
//! ```
//!
//! Serialize an object with `no_std` and without `alloc`.
//! ``` rust
//! # #[macro_use] extern crate serde_derive;
//! # fn main() -> Result<(), serde_cbor::Error> {
//! use serde::Serialize;
//! use serde_cbor::Serializer;
//! use serde_cbor::ser::SliceWrite;
//!
//! #[derive(Serialize)]
//! struct User {
//!     user_id: u32,
//!     password_hash: [u8; 4],
//! }
//!
//! let mut buf = [0u8; 100];
//! let writer = SliceWrite::new(&mut buf[..]);
//! let mut ser = Serializer::new(writer);
//! let user = User {
//!     user_id: 42,
//!     password_hash: [1, 2, 3, 4],
//! };
//! user.serialize(&mut ser)?;
//! let writer = ser.into_inner();
//! let size = writer.bytes_written();
//! let expected = [
//!     0xa2, 0x67, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x69, 0x64, 0x18, 0x2a, 0x6d,
//!     0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64, 0x5f, 0x68, 0x61, 0x73,
//!     0x68, 0x84, 0x1, 0x2, 0x3, 0x4
//! ];
//! assert_eq!(&buf[..size], expected);
//! # Ok(())
//! # }
//! ```
//!
//! Deserialize an object.
//! ``` rust
//! # #[macro_use] extern crate serde_derive;
//! # fn main() -> Result<(), serde_cbor::Error> {
//! #[derive(Debug, PartialEq, Deserialize)]
//! struct User {
//!     user_id: u32,
//!     password_hash: [u8; 4],
//! }
//!
//! let value = [
//!     0xa2, 0x67, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x69, 0x64, 0x18, 0x2a, 0x6d,
//!     0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64, 0x5f, 0x68, 0x61, 0x73,
//!     0x68, 0x84, 0x1, 0x2, 0x3, 0x4
//! ];
//!
//! // from_slice_with_scratch will not alter input data, use it whenever you
//! // borrow from somewhere else.
//! // You will have to size your scratch according to the input data you
//! // expect.
//! use serde_cbor::de::from_slice_with_scratch;
//! let mut scratch = [0u8; 32];
//! let user: User = from_slice_with_scratch(&value[..], &mut scratch)?;
//! assert_eq!(user, User {
//!     user_id: 42,
//!     password_hash: [1, 2, 3, 4],
//! });
//!
//! let mut value = [
//!     0xa2, 0x67, 0x75, 0x73, 0x65, 0x72, 0x5f, 0x69, 0x64, 0x18, 0x2a, 0x6d,
//!     0x70, 0x61, 0x73, 0x73, 0x77, 0x6f, 0x72, 0x64, 0x5f, 0x68, 0x61, 0x73,
//!     0x68, 0x84, 0x1, 0x2, 0x3, 0x4
//! ];
//!
//! // from_mut_slice will move data around the input slice, you may only use it
//! // on data you may own or can modify.
//! use serde_cbor::de::from_mut_slice;
//! let user: User = from_mut_slice(&mut value[..])?;
//! assert_eq!(user, User {
//!     user_id: 42,
//!     password_hash: [1, 2, 3, 4],
//! });
//! # Ok(())
//! # }
//! ```
//!
//! # Limitations
//!
//! While Serde CBOR strives to support all features of Serde and CBOR
//! there are a few limitations.
//!
//! * [Tags] are ignored during deserialization and can't be emitted during
//!     serialization. This is because Serde has no concept of tagged
//!     values. See:&nbsp;[#3]
//! * Unknown [simple values] cause an `UnassignedCode` error.
//!     The simple values *False* and *True* are recognized and parsed as bool.
//!     *Null* and *Undefined* are both deserialized as *unit*.
//!     The *unit* type is serialized as *Null*. See:&nbsp;[#86]
//! * [128-bit integers] can't be directly encoded in CBOR. If you need them
//!     store them as a byte string. See:&nbsp;[#77]
//!
//! [Tags]: https://tools.ietf.org/html/rfc7049#section-2.4.4
//! [#3]: https://github.com/pyfisch/cbor/issues/3
//! [simple values]: https://tools.ietf.org/html/rfc7049#section-3.5
//! [#86]: https://github.com/pyfisch/cbor/issues/86
//! [128-bit integers]: https://doc.rust-lang.org/std/primitive.u128.html
//! [#77]: https://github.com/pyfisch/cbor/issues/77

#![deny(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]

// When we are running tests in no_std mode we need to explicitly link std, because `cargo test`
// will not work without it.
#[cfg(all(not(feature = "std"), test))]
extern crate std;

#[cfg(feature = "alloc")]
extern crate alloc;

pub mod de;
pub mod error;
mod read;
pub mod ser;
pub mod tags;
mod write;

#[cfg(feature = "std")]
pub mod value;

// Re-export the [items recommended by serde](https://serde.rs/conventions.html).
#[doc(inline)]
pub use crate::de::{Deserializer, StreamDeserializer};

#[doc(inline)]
pub use crate::error::{Error, Result};

#[doc(inline)]
pub use crate::ser::Serializer;

// Convenience functions for serialization and deserialization.
// These functions are only available in `std` mode.
#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::de::from_reader;

#[cfg(any(feature = "std", feature = "alloc"))]
#[doc(inline)]
pub use crate::de::from_slice;

#[cfg(any(feature = "std", feature = "alloc"))]
#[doc(inline)]
pub use crate::ser::to_vec;

#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::ser::to_writer;

// Re-export the value type like serde_json
#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::value::Value;