Enum sequoia_openpgp::types::Curve
source · pub enum Curve {
NistP256,
NistP384,
NistP521,
BrainpoolP256,
BrainpoolP512,
Ed25519,
Cv25519,
Unknown(Box<[u8]>),
}Expand description
Elliptic curves used in OpenPGP.
PublicKeyAlgorithm does not differentiate between elliptic
curves. Instead, the curve is specified using an OID prepended to
the key material. We provide this type to be able to match on the
curves.
Note: This enum cannot be exhaustively matched to allow future extensions.
Variants§
NistP256
NIST curve P-256.
NistP384
NIST curve P-384.
NistP521
NIST curve P-521.
BrainpoolP256
brainpoolP256r1.
BrainpoolP512
brainpoolP512r1.
Ed25519
D.J. Bernstein’s “Twisted” Edwards curve Ed25519.
Cv25519
Elliptic curve Diffie-Hellman using D.J. Bernstein’s Curve25519.
Unknown(Box<[u8]>)
Unknown curve.
Implementations§
source§impl Curve
impl Curve
sourcepub fn bits(&self) -> Option<usize>
pub fn bits(&self) -> Option<usize>
Returns the length of public keys over this curve in bits.
For the Kobliz curves this is the size of the underlying finite field. For X25519 it is 256.
Note: This information is useless and should not be used to gauge the security of a particular curve. This function exists only because some legacy PGP application like HKP need it.
Returns None for unknown curves.
Examples
use sequoia_openpgp as openpgp;
use openpgp::types::Curve;
assert_eq!(Curve::NistP256.bits(), Some(256));
assert_eq!(Curve::NistP384.bits(), Some(384));
assert_eq!(Curve::Ed25519.bits(), Some(256));
assert_eq!(Curve::Unknown(Box::new([0x2B, 0x11])).bits(), None);source§impl Curve
impl Curve
sourcepub fn from_oid(oid: &[u8]) -> Curve
pub fn from_oid(oid: &[u8]) -> Curve
Parses the given OID.
Examples
use sequoia_openpgp as openpgp;
use openpgp::types::Curve;
assert_eq!(Curve::from_oid(&[0x2B, 0x81, 0x04, 0x00, 0x22]), Curve::NistP384);
assert_eq!(Curve::from_oid(&[0x2B, 0x11]), Curve::Unknown(Box::new([0x2B, 0x11])));sourcepub fn oid(&self) -> &[u8] ⓘ
pub fn oid(&self) -> &[u8] ⓘ
Returns this curve’s OID.
Examples
use sequoia_openpgp as openpgp;
use openpgp::types::Curve;
assert_eq!(Curve::NistP384.oid(), &[0x2B, 0x81, 0x04, 0x00, 0x22]);
assert_eq!(Curve::Unknown(Box::new([0x2B, 0x11])).oid(), &[0x2B, 0x11]);sourcepub fn len(&self) -> Result<usize>
pub fn len(&self) -> Result<usize>
Returns the length of a coordinate in bits.
Examples
use sequoia_openpgp as openpgp;
use openpgp::types::Curve;
assert!(if let Ok(256) = Curve::NistP256.len() { true } else { false });
assert!(if let Ok(384) = Curve::NistP384.len() { true } else { false });
assert!(if let Ok(256) = Curve::Ed25519.len() { true } else { false });
assert!(if let Err(_) = Curve::Unknown(Box::new([0x2B, 0x11])).len() { true } else { false });Errors
Returns Error::UnsupportedEllipticCurve if the curve is not
supported.
sourcepub fn is_supported(&self) -> bool
pub fn is_supported(&self) -> bool
Returns whether this algorithm is supported.
Examples
use sequoia_openpgp as openpgp;
use openpgp::types::Curve;
assert!(Curve::Ed25519.is_supported());
assert!(!Curve::Unknown(Box::new([0x2B, 0x11])).is_supported());Trait Implementations§
source§impl Ord for Curve
impl Ord for Curve
source§impl PartialEq<Curve> for Curve
impl PartialEq<Curve> for Curve
source§impl PartialOrd<Curve> for Curve
impl PartialOrd<Curve> for Curve
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self and other) and is used by the <=
operator. Read more