1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
use std::cmp;
use std::convert::TryInto;
use std::fmt;
use std::io;

use buffered_reader::BufferedReader;

use crate::types::{
    AEADAlgorithm,
    SymmetricAlgorithm,
};
use crate::utils::{
    write_be_u64,
};
use crate::Error;
use crate::Result;
use crate::crypto::SessionKey;
use crate::seal;
use crate::parse::Cookie;

/// Minimum AEAD chunk size.
///
/// Implementations MUST support chunk sizes down to 64B.
const MIN_CHUNK_SIZE: usize = 1 << 6; // 64B

/// Maximum AEAD chunk size.
///
/// Implementations MUST support chunk sizes up to 4MiB.
const MAX_CHUNK_SIZE: usize = 1 << 22; // 4MiB

/// Maximum size of any Nonce used by an AEAD mode.
pub const MAX_NONCE_LEN: usize = 16;

/// Converts a chunk size to a usize.
pub(crate) fn chunk_size_usize(chunk_size: u64) -> Result<usize> {
    chunk_size.try_into()
        .map_err(|_| Error::InvalidOperation(
            format!("AEAD chunk size exceeds size of \
                     virtual memory: {}", chunk_size)).into())
}

/// An AEAD mode of operation.
///
/// # Sealed trait
///
/// This trait is [sealed] and cannot be implemented for types outside this crate.
/// Therefore it can be extended in a non-breaking way.
/// If you want to implement the trait inside the crate
/// you also need to implement the `seal::Sealed` marker trait.
///
/// [sealed]: https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed
pub trait Aead : seal::Sealed {
    /// Adds associated data `ad`.
    fn update(&mut self, ad: &[u8]) -> Result<()>;

    /// Encrypts one block `src` to `dst`.
    fn encrypt(&mut self, dst: &mut [u8], src: &[u8]) -> Result<()>;

    /// Produce the digest.
    fn digest(&mut self, digest: &mut [u8]) -> Result<()>;

    /// Length of the digest in bytes.
    fn digest_size(&self) -> usize;

    /// Decrypt one block `src` to `dst` and verify if the digest
    /// matches `digest`.
    fn decrypt_verify(&mut self, dst: &mut [u8], src: &[u8], digest: &[u8]) -> Result<()>;
}

/// Whether AEAD cipher is used for data encryption or decryption.
pub(crate) enum CipherOp {
    /// Cipher is used for data encryption.
    Encrypt,
    /// Cipher is used for data decryption.
    Decrypt,
}

impl AEADAlgorithm {
    /// Returns the digest size of the AEAD algorithm.
    pub fn digest_size(&self) -> Result<usize> {
        use self::AEADAlgorithm::*;
        match self {
            // According to RFC4880bis, Section 5.16.1.
            EAX => Ok(16),
            // According to RFC4880bis, Section 5.16.2.
            OCB => Ok(16),
            _ => Err(Error::UnsupportedAEADAlgorithm(*self).into()),
        }
    }

    /// Returns the nonce size of the AEAD algorithm.
    pub fn nonce_size(&self) -> Result<usize> {
        use self::AEADAlgorithm::*;
        match self {
            // According to RFC4880bis, Section 5.16.1.
            EAX => Ok(16),
            // According to RFC4880bis, Section 5.16.2, the IV is "at
            // least 15 octets long".  GnuPG hardcodes 15 in
            // openpgp_aead_algo_info.
            OCB => Ok(15),
            _ => Err(Error::UnsupportedAEADAlgorithm(*self).into()),
        }
    }

    /// Returns the initialization vector size of the AEAD algorithm.
    ///
    /// This function is deprecated. Please use
    /// [`AEADAlgorithm::nonce_size`].
    #[deprecated = "Use nonce_size"]
    pub fn iv_size(&self) -> Result<usize> {
        self.nonce_size()
    }
}

/// Schedules nonce and additional authenticated data for use with
/// each AEAD chunk.
pub trait Schedule: Send + Sync {
    /// Calls `fun` with the appropriate nonce and additional
    /// authenticated data.
    ///
    /// This is appropriate for all but the last chunk.
    ///
    /// `index` is the current chunk index.
    fn next_chunk<F, R>(&self, index: u64, fun: F) -> R
    where
        F: FnMut(&[u8], &[u8]) -> R;

    /// Calls `fun` with the appropriate nonce and additional
    /// authenticated data for the last chunk.
    ///
    /// This is appropriate for the last chunk.
    ///
    /// `index` is the current chunk index.
    fn final_chunk<F, R>(&self, index: u64, length: u64, fun: F) -> R
    where
        F: FnMut(&[u8], &[u8]) -> R;
}

const AED1AD_PREFIX_LEN: usize = 5;
pub(crate) struct AEDv1Schedule {
    iv: Box<[u8]>,
    ad: [u8; AED1AD_PREFIX_LEN],
}

impl AEDv1Schedule {
    pub(crate) fn new(sym_algo: SymmetricAlgorithm,
                      aead: AEADAlgorithm,
                      chunk_size: usize,
                      iv: &[u8]) -> Result<Self>
    {
        if !(MIN_CHUNK_SIZE..=MAX_CHUNK_SIZE).contains(&chunk_size) {
            return Err(Error::InvalidArgument(
                format!("Invalid AEAD chunk size: {}", chunk_size)).into());
        }

        Ok(Self {
            iv: iv.into(),
            ad: [
                // Prefix.
                0xd4, // Packet tag.
                1,    // Version.
                sym_algo.into(),
                aead.into(),
                chunk_size.trailing_zeros() as u8 - 6,
            ],
        })
    }
}

impl Schedule for AEDv1Schedule {
    fn next_chunk<F, R>(&self, index: u64, mut fun: F) -> R
    where
        F: FnMut(&[u8], &[u8]) -> R,
    {
        // Prepare the associated data.
        let mut ad = [0u8; AED1AD_PREFIX_LEN + 8];
        ad[..AED1AD_PREFIX_LEN].copy_from_slice(&self.ad);
        write_be_u64(&mut ad[AED1AD_PREFIX_LEN..],
                     index);

        // The nonce is computed by treating the starting
        // initialization vector as a 16-octet, big-endian value and
        // exclusive-oring the low eight octets of it with the chunk
        // index.
        let mut nonce_store = [0u8; MAX_NONCE_LEN];
        let nonce_len = self.iv.len();
        let nonce = &mut nonce_store[..nonce_len];
        nonce.copy_from_slice(&self.iv);
        let index_be: [u8; 8] = index.to_be_bytes();
        for (i, o) in &mut nonce[nonce_len.saturating_sub(8)..].iter_mut()
            .enumerate()
        {
            // The lower eight octets of the associated data
            // are the big endian representation of the chunk
            // index.
            *o ^= index_be[i];
        }

        fun(nonce, &ad)
    }

    fn final_chunk<F, R>(&self, index: u64, length: u64, mut fun: F) -> R
    where
        F: FnMut(&[u8], &[u8]) -> R,
    {
        // Prepare the associated data.
        let mut ad = [0u8; AED1AD_PREFIX_LEN + 8 + 8];
        ad[..AED1AD_PREFIX_LEN].copy_from_slice(&self.ad);
        write_be_u64(&mut ad[AED1AD_PREFIX_LEN..AED1AD_PREFIX_LEN + 8],
                     index);
        write_be_u64(&mut ad[AED1AD_PREFIX_LEN + 8..],
                     length);

        // The nonce is computed by treating the starting
        // initialization vector as a 16-octet, big-endian value and
        // exclusive-oring the low eight octets of it with the chunk
        // index.
        let mut nonce_store = [0u8; MAX_NONCE_LEN];
        let nonce_len = self.iv.len();
        let nonce = &mut nonce_store[..nonce_len];
        nonce.copy_from_slice(&self.iv);
        let index_be: [u8; 8] = index.to_be_bytes();
        for (i, o) in &mut nonce[nonce_len.saturating_sub(8)..].iter_mut()
            .enumerate()
        {
            // The lower eight octets of the associated data
            // are the big endian representation of the chunk
            // index.
            *o ^= index_be[i];
        }

        fun(nonce, &ad)
    }
}

/// A `Read`er for decrypting AEAD-encrypted data.
pub struct Decryptor<'a, S: Schedule> {
    // The encrypted data.
    source: Box<dyn BufferedReader<Cookie> + 'a>,

    sym_algo: SymmetricAlgorithm,
    aead: AEADAlgorithm,
    key: SessionKey,
    schedule: S,

    digest_size: usize,
    chunk_size: usize,
    chunk_index: u64,
    bytes_decrypted: u64,
    // Up to a chunk of unread data.
    buffer: Vec<u8>,
}
assert_send_and_sync!(Decryptor<'_, S> where S: Schedule);


impl<'a, S: Schedule> Decryptor<'a, S> {
    /// Instantiate a new AEAD decryptor.
    ///
    /// `source` is the source to wrap.
    pub fn new<R>(sym_algo: SymmetricAlgorithm,
                  aead: AEADAlgorithm, chunk_size: usize,
                  schedule: S, key: SessionKey, source: R)
        -> Result<Self>
        where R: io::Read + Send + Sync + 'a
    {
        Self::from_buffered_reader(
            sym_algo, aead, chunk_size, schedule, key,
            Box::new(buffered_reader::Generic::with_cookie(
                source, None, Default::default())))
    }

    pub fn from_buffered_reader(sym_algo: SymmetricAlgorithm,
                            aead: AEADAlgorithm, chunk_size: usize,
                            schedule: S, key: SessionKey,
                            source: Box<dyn 'a + BufferedReader<Cookie>>)
        -> Result<Self>
    {
        Ok(Decryptor {
            source,
            sym_algo,
            aead,
            key,
            schedule,
            digest_size: aead.digest_size()?,
            chunk_size,
            chunk_index: 0,
            bytes_decrypted: 0,
            buffer: Vec::with_capacity(chunk_size),
        })
    }

    // Note: this implementation tries *very* hard to make sure we don't
    // gratuitiously do a short read.  Specifically, if the return value
    // is less than `plaintext.len()`, then it is either because we
    // reached the end of the input or an error occurred.
    fn read_helper(&mut self, plaintext: &mut [u8]) -> Result<usize> {
        let mut pos = 0;

        // 1. Copy any buffered data.
        if !self.buffer.is_empty() {
            let to_copy = cmp::min(self.buffer.len(), plaintext.len());
            plaintext[..to_copy].copy_from_slice(&self.buffer[..to_copy]);
            crate::vec_drain_prefix(&mut self.buffer, to_copy);

            pos = to_copy;
            if pos == plaintext.len() {
                return Ok(pos);
            }
        }

        // 2. Decrypt the data a chunk at a time until we've filled
        // `plaintext`.
        //
        // Unfortunately, framing is hard.
        //
        // Recall: AEAD data is of the form:
        //
        //   [ chunk1 ][ tag1 ] ... [ chunkN ][ tagN ][ tagF ]
        //
        // And, all chunks are the same size except for the last
        // chunk, which may be shorter.
        //
        // The naive approach to decryption is to read a chunk and a
        // tag at a time.  Unfortunately, this may not work if the
        // last chunk is a partial chunk.
        //
        // Assume that the chunk size is 32 bytes and the digest size
        // is 16 bytes, and consider a message with 17 bytes of data.
        // That message will be encrypted as follows:
        //
        //   [ chunk1 ][ tag1 ][ tagF ]
        //       17B     16B     16B
        //
        // If we read a chunk and a digest, we'll successfully read 48
        // bytes of data.  Unfortunately, we'll have over read: the
        // last 15 bytes are from the final tag.
        //
        // To correctly handle this case, we have to make sure that
        // there are at least a tag worth of bytes left over when we
        // read a chunk and a tag.

        let n_chunks
            = (plaintext.len() - pos + self.chunk_size - 1) / self.chunk_size;
        let chunk_digest_size = self.chunk_size + self.digest_size;
        let final_digest_size = self.digest_size;

        for _ in 0..n_chunks {
            // Do a little dance to avoid exclusively locking
            // `self.source`.
            let to_read = chunk_digest_size + final_digest_size;
            let result = {
                match self.source.data(to_read) {
                    Ok(_) => Ok(self.source.buffer()),
                    Err(err) => Err(err),
                }
            };

            let check_final_tag;
            let chunk = match result {
                Ok(chunk) => {
                    if chunk.is_empty() {
                        // Exhausted source.
                        return Ok(pos);
                    }

                    if chunk.len() < final_digest_size {
                        return Err(Error::ManipulatedMessage.into());
                    }

                    check_final_tag = chunk.len() < to_read;

                    // Return the chunk.
                    &chunk[..cmp::min(chunk.len(), to_read) - final_digest_size]
                },
                Err(e) => return Err(e.into()),
            };

            assert!(chunk.len() <= chunk_digest_size);

            if chunk.is_empty() {
                // There is nothing to decrypt: all that is left is
                // the final tag.
            } else if chunk.len() <= self.digest_size {
                // A chunk has to include at least one byte and a tag.
                return Err(Error::ManipulatedMessage.into());
            } else {
                let mut aead = self.schedule.next_chunk(
                    self.chunk_index,
                    |iv, ad| {
                        self.aead.context(self.sym_algo, &self.key, iv,
                                          CipherOp::Decrypt)
                            .map(|mut aead| {
                                aead.update(ad)?;
                                Ok::<Box<dyn Aead>, anyhow::Error>(aead)
                            })
                    })??;

                // Decrypt the chunk and check the tag.
                let to_decrypt = chunk.len() - self.digest_size;

                // If plaintext doesn't have enough room for the whole
                // chunk, then we have to double buffer.
                let double_buffer = to_decrypt > plaintext.len() - pos;
                let buffer = if double_buffer {
                    self.buffer.resize(to_decrypt, 0);
                    &mut self.buffer[..]
                } else {
                    &mut plaintext[pos..pos + to_decrypt]
                };

                aead.decrypt_verify(buffer, &chunk[..to_decrypt], &chunk[to_decrypt..])?;

                if double_buffer {
                    let to_copy = plaintext.len() - pos;
                    assert!(0 < to_copy);
                    assert!(to_copy < self.chunk_size);

                    plaintext[pos..pos + to_copy]
                        .copy_from_slice(&self.buffer[..to_copy]);
                    crate::vec_drain_prefix(&mut self.buffer, to_copy);
                    pos += to_copy;
                } else {
                    pos += to_decrypt;
                }

                // Increase index, update position in plaintext.
                self.chunk_index += 1;
                self.bytes_decrypted += to_decrypt as u64;

                // Consume the data only on success so that we keep
                // returning the error.
                let chunk_len = chunk.len();
                self.source.consume(chunk_len);
            }

            if check_final_tag {
                // We read the whole ciphertext, now check the final digest.
                let mut aead = self.schedule.final_chunk(
                    self.chunk_index, self.bytes_decrypted,
                    |iv, ad| {
                        self.aead.context(self.sym_algo, &self.key, iv,
                                          CipherOp::Decrypt)
                            .map(|mut aead| {
                                aead.update(ad)?;
                                Ok::<Box<dyn Aead>, anyhow::Error>(aead)
                            })
                    })??;

                let final_digest = self.source.data(final_digest_size)?;

                aead.decrypt_verify(&mut [], &[], final_digest)?;

                // Consume the data only on success so that we keep
                // returning the error.
                self.source.consume(final_digest_size);
                break;
            }
        }

        Ok(pos)
    }
}

// Note: this implementation tries *very* hard to make sure we don't
// gratuitiously do a short read.  Specifically, if the return value
// is less than `plaintext.len()`, then it is either because we
// reached the end of the input or an error occurred.
impl<'a, S: Schedule> io::Read for Decryptor<'a, S> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        match self.read_helper(buf) {
            Ok(n) => Ok(n),
            Err(e) => match e.downcast::<io::Error>() {
                // An io::Error.  Pass as-is.
                Ok(e) => Err(e),
                // A failure.  Wrap it.
                Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
            },
        }
    }
}

/// A `BufferedReader` that decrypts AEAD-encrypted data as it is
/// read.
pub(crate) struct BufferedReaderDecryptor<'a, S: Schedule> {
    reader: buffered_reader::Generic<Decryptor<'a, S>, Cookie>,
}

impl<'a, S: Schedule> BufferedReaderDecryptor<'a, S> {
    /// Like `new()`, but sets a cookie, which can be retrieved using
    /// the `cookie_ref` and `cookie_mut` methods, and set using
    /// the `cookie_set` method.
    pub fn with_cookie(sym_algo: SymmetricAlgorithm,
                       aead: AEADAlgorithm, chunk_size: usize, schedule: S,
                       key: SessionKey, source: Box<dyn BufferedReader<Cookie> + 'a>,
                       cookie: Cookie)
        -> Result<Self>
    {
        Ok(BufferedReaderDecryptor {
            reader: buffered_reader::Generic::with_cookie(
                Decryptor::from_buffered_reader(
                    sym_algo, aead, chunk_size, schedule, key, source)?,
                None, cookie),
        })
    }
}

impl<'a, S: Schedule> io::Read for BufferedReaderDecryptor<'a, S> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.reader.read(buf)
    }
}

impl<'a, S: Schedule> fmt::Display for BufferedReaderDecryptor<'a, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "BufferedReaderDecryptor")
    }
}

impl<'a, S: Schedule> fmt::Debug for BufferedReaderDecryptor<'a, S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("BufferedReaderDecryptor")
            .field("reader", &self.get_ref().unwrap())
            .finish()
    }
}

impl<'a, S: Schedule> BufferedReader<Cookie> for BufferedReaderDecryptor<'a, S> {
    fn buffer(&self) -> &[u8] {
        self.reader.buffer()
    }

    fn data(&mut self, amount: usize) -> io::Result<&[u8]> {
        self.reader.data(amount)
    }

    fn data_hard(&mut self, amount: usize) -> io::Result<&[u8]> {
        self.reader.data_hard(amount)
    }

    fn data_eof(&mut self) -> io::Result<&[u8]> {
        self.reader.data_eof()
    }

    fn consume(&mut self, amount: usize) -> &[u8] {
        self.reader.consume(amount)
    }

    fn data_consume(&mut self, amount: usize)
                    -> io::Result<&[u8]> {
        self.reader.data_consume(amount)
    }

    fn data_consume_hard(&mut self, amount: usize) -> io::Result<&[u8]> {
        self.reader.data_consume_hard(amount)
    }

    fn read_be_u16(&mut self) -> io::Result<u16> {
        self.reader.read_be_u16()
    }

    fn read_be_u32(&mut self) -> io::Result<u32> {
        self.reader.read_be_u32()
    }

    fn steal(&mut self, amount: usize) -> io::Result<Vec<u8>> {
        self.reader.steal(amount)
    }

    fn steal_eof(&mut self) -> io::Result<Vec<u8>> {
        self.reader.steal_eof()
    }

    fn get_mut(&mut self) -> Option<&mut dyn BufferedReader<Cookie>> {
        Some(&mut self.reader.reader_mut().source)
    }

    fn get_ref(&self) -> Option<&dyn BufferedReader<Cookie>> {
        Some(&self.reader.reader_ref().source)
    }

    fn into_inner<'b>(self: Box<Self>)
            -> Option<Box<dyn BufferedReader<Cookie> + 'b>> where Self: 'b {
        Some(self.reader.into_reader().source.as_boxed())
    }

    fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
        self.reader.cookie_set(cookie)
    }

    fn cookie_ref(&self) -> &Cookie {
        self.reader.cookie_ref()
    }

    fn cookie_mut(&mut self) -> &mut Cookie {
        self.reader.cookie_mut()
    }
}

/// A `Write`r for AEAD encrypting data.
pub struct Encryptor<W: io::Write, S: Schedule> {
    inner: Option<W>,

    sym_algo: SymmetricAlgorithm,
    aead: AEADAlgorithm,
    key: SessionKey,
    schedule: S,

    digest_size: usize,
    chunk_size: usize,
    chunk_index: u64,
    bytes_encrypted: u64,
    // Up to a chunk of unencrypted data.
    buffer: Vec<u8>,

    // A place to write encrypted data into.
    scratch: Vec<u8>,
}
assert_send_and_sync!(Encryptor<W, S> where W: io::Write, S: Schedule);

impl<W: io::Write, S: Schedule> Encryptor<W, S> {
    /// Instantiate a new AEAD encryptor.
    pub fn new(sym_algo: SymmetricAlgorithm, aead: AEADAlgorithm,
               chunk_size: usize, schedule: S, key: SessionKey, sink: W)
               -> Result<Self> {
        Ok(Encryptor {
            inner: Some(sink),
            sym_algo,
            aead,
            key,
            schedule,
            digest_size: aead.digest_size()?,
            chunk_size,
            chunk_index: 0,
            bytes_encrypted: 0,
            buffer: Vec::with_capacity(chunk_size),
            scratch: vec![0; chunk_size],
        })
    }

    // Like io::Write, but returns our Result.
    fn write_helper(&mut self, mut buf: &[u8]) -> Result<usize> {
        if self.inner.is_none() {
            return Err(io::Error::new(io::ErrorKind::BrokenPipe,
                                      "Inner writer was taken").into());
        }
        let amount = buf.len();

        // First, fill the buffer if there is something in it.
        if !self.buffer.is_empty() {
            let n = cmp::min(buf.len(), self.chunk_size - self.buffer.len());
            self.buffer.extend_from_slice(&buf[..n]);
            assert!(self.buffer.len() <= self.chunk_size);
            buf = &buf[n..];

            // And possibly encrypt the chunk.
            if self.buffer.len() == self.chunk_size {
                let mut aead =
                    self.schedule.next_chunk(self.chunk_index, |iv, ad| {
                        self.aead.context(self.sym_algo, &self.key, iv,
                                          CipherOp::Encrypt)
                            .map(|mut aead| {
                                aead.update(ad)?;
                                Ok::<Box<dyn Aead>, anyhow::Error>(aead)
                            })
                    })??;

                let inner = self.inner.as_mut().unwrap();

                // Encrypt the chunk.
                aead.encrypt(&mut self.scratch, &self.buffer)?;
                self.bytes_encrypted += self.scratch.len() as u64;
                self.chunk_index += 1;
                crate::vec_truncate(&mut self.buffer, 0);
                inner.write_all(&self.scratch)?;

                // Write digest.
                aead.digest(&mut self.scratch[..self.digest_size])?;
                inner.write_all(&self.scratch[..self.digest_size])?;
            }
        }

        // Then, encrypt all whole chunks.
        for chunk in buf.chunks(self.chunk_size) {
            if chunk.len() == self.chunk_size {
                // Complete chunk.
                let mut aead =
                    self.schedule.next_chunk(self.chunk_index, |iv, ad| {
                        self.aead.context(self.sym_algo, &self.key, iv,
                                          CipherOp::Encrypt)
                            .map(|mut aead| {
                                aead.update(ad)?;
                                Ok::<Box<dyn Aead>, anyhow::Error>(aead)
                            })
                    })??;

                let inner = self.inner.as_mut().unwrap();

                // Encrypt the chunk.
                aead.encrypt(&mut self.scratch, chunk)?;
                self.bytes_encrypted += self.scratch.len() as u64;
                self.chunk_index += 1;
                inner.write_all(&self.scratch)?;

                // Write digest.
                aead.digest(&mut self.scratch[..self.digest_size])?;
                inner.write_all(&self.scratch[..self.digest_size])?;
            } else {
                // Stash for later.
                assert!(self.buffer.is_empty());
                self.buffer.extend_from_slice(chunk);
            }
        }

        Ok(amount)
    }

    /// Finish encryption and write last partial chunk.
    pub fn finish(&mut self) -> Result<W> {
        if let Some(mut inner) = self.inner.take() {
            if !self.buffer.is_empty() {
                let mut aead =
                    self.schedule.next_chunk(self.chunk_index, |iv, ad| {
                        self.aead.context(self.sym_algo, &self.key, iv,
                                          CipherOp::Encrypt)
                            .map(|mut aead| {
                                aead.update(ad)?;
                                Ok::<Box<dyn Aead>, anyhow::Error>(aead)
                            })
                    })??;

                // Encrypt the chunk.
                unsafe { self.scratch.set_len(self.buffer.len()) }
                aead.encrypt(&mut self.scratch, &self.buffer)?;
                self.bytes_encrypted += self.scratch.len() as u64;
                self.chunk_index += 1;
                crate::vec_truncate(&mut self.buffer, 0);
                inner.write_all(&self.scratch)?;

                // Write digest.
                unsafe { self.scratch.set_len(self.digest_size) }
                aead.digest(&mut self.scratch[..self.digest_size])?;
                inner.write_all(&self.scratch[..self.digest_size])?;
            }

            // Write final digest.
            let mut aead = self.schedule.final_chunk(
                self.chunk_index, self.bytes_encrypted,
                |iv, ad| {
                    self.aead.context(self.sym_algo, &self.key, iv,
                                      CipherOp::Encrypt)
                        .map(|mut aead| {
                            aead.update(ad)?;
                            Ok::<Box<dyn Aead>, anyhow::Error>(aead)
                        })
                })??;
            aead.digest(&mut self.scratch[..self.digest_size])?;
            inner.write_all(&self.scratch[..self.digest_size])?;

            Ok(inner)
        } else {
            Err(io::Error::new(io::ErrorKind::BrokenPipe,
                               "Inner writer was taken").into())
        }
    }

    /// Acquires a reference to the underlying writer.
    pub fn get_ref(&self) -> Option<&W> {
        self.inner.as_ref()
    }

    /// Acquires a mutable reference to the underlying writer.
    #[allow(dead_code)]
    pub fn get_mut(&mut self) -> Option<&mut W> {
        self.inner.as_mut()
    }
}

impl<W: io::Write, S: Schedule> io::Write for Encryptor<W, S> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        match self.write_helper(buf) {
            Ok(n) => Ok(n),
            Err(e) => match e.downcast::<io::Error>() {
                // An io::Error.  Pass as-is.
                Ok(e) => Err(e),
                // A failure.  Wrap it.
                Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
            },
        }
    }

    fn flush(&mut self) -> io::Result<()> {
        // It is not clear how we can implement this, because we can
        // only operate on chunk sizes.  We will, however, ask our
        // inner writer to flush.
        if let Some(ref mut inner) = self.inner {
            inner.flush()
        } else {
            Err(io::Error::new(io::ErrorKind::BrokenPipe,
                               "Inner writer was taken"))
        }
    }
}

impl<W: io::Write, S: Schedule> Drop for Encryptor<W, S> {
    fn drop(&mut self) {
        // Unfortunately, we cannot handle errors here.  If error
        // handling is a concern, call finish() and properly handle
        // errors there.
        let _ = self.finish();
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::{Read, Write};

    /// This test tries to encrypt, then decrypt some data.
    #[test]
    fn roundtrip() {
        use std::io::Cursor;

        // EAX and OCB can be used with all symmetric algorithms using
        // a 16-byte block size.
        for sym_algo in [SymmetricAlgorithm::AES128,
                         SymmetricAlgorithm::AES192,
                         SymmetricAlgorithm::AES256,
                         SymmetricAlgorithm::Twofish,
                         SymmetricAlgorithm::Camellia128,
                         SymmetricAlgorithm::Camellia192,
                         SymmetricAlgorithm::Camellia256]
                         .iter()
                         .filter(|algo| algo.is_supported()) {

            for aead in [
                AEADAlgorithm::EAX,
                AEADAlgorithm::OCB,
            ].iter().filter(|algo| algo.is_supported() && algo.supports_symmetric_algo(sym_algo)) {
                let chunk_size = 64;
                let mut key = vec![0; sym_algo.key_size().unwrap()];
                crate::crypto::random(&mut key);
                let key: SessionKey = key.into();
                let mut iv = vec![0; aead.nonce_size().unwrap()];
                crate::crypto::random(&mut iv);

                let mut ciphertext = Vec::new();
                {
                    let schedule = AEDv1Schedule::new(
                        *sym_algo,
                        *aead,
                        chunk_size,
                        &iv).expect("valid parameters");
                    let mut encryptor = Encryptor::new(*sym_algo,
                                                       *aead,
                                                       chunk_size,
                                                       schedule,
                                                       key.clone(),
                                                       &mut ciphertext)
                        .unwrap();

                    encryptor.write_all(crate::tests::manifesto()).unwrap();
                }

                let mut plaintext = Vec::new();
                {
                    let schedule = AEDv1Schedule::new(
                        *sym_algo,
                        *aead,
                        chunk_size,
                        &iv).expect("valid parameters");
                    let mut decryptor = Decryptor::new(*sym_algo,
                                                       *aead,
                                                       chunk_size,
                                                       schedule,
                                                       key,
                                                       Cursor::new(&ciphertext))
                        .unwrap();

                    decryptor.read_to_end(&mut plaintext).unwrap();
                }

                assert_eq!(&plaintext[..], crate::tests::manifesto());
            }
        }
    }
}