[][src]Struct sequoia_openpgp::packet::signature::subpacket::SubpacketArea

pub struct SubpacketArea { /* fields omitted */ }

Subpacket area.

A version 4 Signature contains two areas that can stored signature subpackets: a so-called hashed subpacket area, and a so-called unhashed subpacket area. The hashed subpacket area is protected by the signature; the unhashed area is not. This makes the unhashed subpacket area only appropriate for self-authenticating data, like the Issuer subpacket. The SubpacketAreas data structure understands these nuances and routes lookups appropriately. As such, it is usually better to work with subpackets using that interface.

Examples

fn sig_stats(sig: &Signature) {
    eprintln!("Hashed subpacket area has {} subpackets",
              sig.hashed_area().iter().count());
    eprintln!("Unhashed subpacket area has {} subpackets",
              sig.unhashed_area().iter().count());
}

Implementations

impl SubpacketArea[src]

pub fn new(packets: Vec<Subpacket>) -> SubpacketArea[src]

Returns a new subpacket area based on data.

pub fn iter(&self) -> impl Iterator<Item = &Subpacket>[src]

Iterates over the subpackets.

Examples

Print the number of different types of subpackets in a Signature's hashed subpacket area:

let mut tags: Vec<_> = sig.hashed_area().iter().map(|sb| {
    sb.tag()
}).collect();
tags.sort();
tags.dedup();

eprintln!("The hashed area contains {} types of subpackets",
          tags.len());

pub fn subpacket(&self, tag: SubpacketTag) -> Option<&Subpacket>[src]

Returns the subpacket, if any, with the specified tag.

A given subpacket may occur multiple times. For some, like the Notation Data subpacket, this is reasonable. For others, like the Signature Creation Time subpacket, this results in an ambiguity. Section 5.2.4.1 of RFC 4880 says:

a signature may contain multiple copies of a preference or multiple expiration times. In most cases, an implementation SHOULD use the last subpacket in the signature, but MAY use any conflict resolution scheme that makes more sense.

This function implements the recommended strategy of returning the last subpacket.

Examples

All signatures must have a Signature Creation Time subpacket in the hashed subpacket area:

use sequoia_openpgp as openpgp;
use openpgp::packet::signature::subpacket::SubpacketTag;

if sig.hashed_area().subpacket(SubpacketTag::SignatureCreationTime).is_none() {
    eprintln!("Invalid signature.");
}

pub fn subpackets(
    &self,
    target: SubpacketTag
) -> impl Iterator<Item = &Subpacket>
[src]

Returns all instances of the specified subpacket.

For most subpackets, only a single instance of the subpacket makes sense. SubpacketArea::subpacket resolves this ambiguity by returning the last instance of the request subpacket type. But, for some subpackets, like the Notation Data subpacket, multiple instances of the subpacket are reasonable.

Examples

Count the number of Notation Data subpackets in the hashed subpacket area:

use sequoia_openpgp as openpgp;
use openpgp::packet::signature::subpacket::SubpacketTag;

eprintln!("Signature has {} notations.",
          sig.hashed_area().subpackets(SubpacketTag::NotationData).count());

pub fn add(&mut self, packet: Subpacket) -> Result<()>[src]

Adds the given subpacket.

Adds the given subpacket to the subpacket area. If the subpacket area already contains subpackets with the same tag, they are left in place. If you want to replace them, you should instead use the SubpacketArea::replace method.

Errors

Returns Error::MalformedPacket if adding the packet makes the subpacket area exceed the size limit.

Examples

Adds an additional Issuer subpacket to the unhashed subpacket area. (This is useful if the key material is associated with multiple certificates, e.g., a v4 and a v5 certificate.) Because the subpacket is added to the unhashed area, the signature remains valid.

use sequoia_openpgp as openpgp;
use openpgp::KeyID;
use openpgp::packet::signature::subpacket::{
    Subpacket,
    SubpacketTag,
    SubpacketValue,
};

let mut sig: Signature = sig;
sig.unhashed_area_mut().add(
    Subpacket::new(
        SubpacketValue::Issuer(KeyID::from_hex("AAAA BBBB CCCC DDDD")?),
    false)?);

sig.verify_message(signer.public(), msg)?;

pub fn replace(&mut self, packet: Subpacket) -> Result<()>[src]

Adds the given subpacket, replacing all other subpackets with the same tag.

Adds the given subpacket to the subpacket area. If the subpacket area already contains subpackets with the same tag, they are first removed. If you want to preserve them, you should instead use the SubpacketArea::add method.

Errors

Returns Error::MalformedPacket if adding the packet makes the subpacket area exceed the size limit.

Examples

Replaces the Issuer subpacket in the unhashed area. Because the unhashed area is not protected by the signature, the signature remains valid:

use sequoia_openpgp as openpgp;
use openpgp::KeyID;
use openpgp::packet::signature::subpacket::{
    Subpacket,
    SubpacketTag,
    SubpacketValue,
};

let mut sig: Signature = sig;
sig.unhashed_area_mut().replace(
    Subpacket::new(
        SubpacketValue::Issuer(KeyID::from_hex("AAAA BBBB CCCC DDDD")?),
    false)?);

sig.verify_message(signer.public(), msg)?;

pub fn remove_all(&mut self, tag: SubpacketTag)[src]

Removes all subpackets with the given tag.

pub fn clear(&mut self)[src]

Removes all subpackets.

pub fn sort(&mut self)[src]

Sorts the subpackets by subpacket tag.

This normalizes the subpacket area, and accelerates lookups in implementations that sort the in-core representation and use binary search for lookups.

The subpackets are sorted by the numeric value of their tag. The sort is stable. So, if there are multiple Notation Data subpackets, for instance, they will remain in the same order.

The SignatureBuilder sorts the subpacket areas just before creating the signature.

Trait Implementations

impl Clone for SubpacketArea[src]

impl Debug for SubpacketArea[src]

impl Default for SubpacketArea[src]

impl Eq for SubpacketArea[src]

impl Hash for SubpacketArea[src]

impl<'a> IntoIterator for &'a SubpacketArea[src]

type Item = &'a Subpacket

The type of the elements being iterated over.

type IntoIter = Iter<'a, Subpacket>

Which kind of iterator are we turning this into?

impl Marshal for SubpacketArea[src]

impl MarshalInto for SubpacketArea[src]

impl PartialEq<SubpacketArea> for SubpacketArea[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> DynClone for T where
    T: Clone
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.