1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//! Packet container support.
//!
//! Some packets contain other packets.  This creates a tree
//! structure.

use std::fmt;
use std::hash::{Hash, Hasher};
use std::slice;
use std::vec;

use crate::{
    Packet,
    crypto::hash,
    packet::Iter,
    types::HashAlgorithm,
};

/// Holds zero or more OpenPGP packets.
///
/// This is used by OpenPGP container packets, like the compressed
/// data packet, to store the containing packets.
#[derive(Clone)]
pub(crate) struct Container {
    /// Used by container packets (such as the encryption and
    /// compression packets) to reference their immediate children.
    /// This results in a tree structure.
    ///
    /// This is automatically populated when using the `PacketPile`
    /// deserialization routines, e.g., [`PacketPile::from_file`].  By
    /// default, it is *not* automatically filled in by the
    /// [`PacketParser`] deserialization routines; this needs to be
    /// done manually.
    ///
    ///   [`PacketPile`]: ../struct.PacketPile.html
    ///   [`PacketPile::from_file`]: ../struct.PacketPile.html#method.from_file
    ///   [`PacketParser`]: ../parse/struct.PacketParser.html
    pub(crate) packets: Vec<Packet>,

    /// Holds a packet's body.
    ///
    /// We conceptually divide packets into two parts: the header and
    /// the body.  Whereas the header is read eagerly when the packet
    /// is deserialized, the body is only read on demand.
    ///
    /// A packet's body is stored here either when configured via
    /// [`PacketParserBuilder::buffer_unread_content`], when one of
    /// the [`PacketPile`] deserialization routines is used, or on demand
    /// for a particular packet using the
    /// [`PacketParser::buffer_unread_content`] method.
    ///
    ///   [`PacketParserBuilder::buffer_unread_content`]: ../parse/struct.PacketParserBuilder.html#method.buffer_unread_content
    ///   [`PacketPile`]: ../struct.PacketPile.html
    ///   [`PacketParser::buffer_unread_content`]: ../parse/struct.PacketParser.html#method.buffer_unread_content
    ///
    /// There are three different types of packets:
    ///
    ///   - Packets like the [`UserID`] and [`Signature`] packets,
    ///     don't actually have a body.  These packets don't use this
    ///     field.
    ///
    ///   [`UserID`]: ../packet/struct.UserID.html
    ///   [`Signature`]: ../packet/signature/struct.Signature.html
    ///
    ///   - One packet, the literal data packet, includes unstructured
    ///     data.  That data is stored in [`Literal`].
    ///
    ///   [`Literal`]: ../packet/struct.Literal.html
    ///
    ///   - Some packets are containers.  If the parser does not parse
    ///     the packet's child, either because the caller used
    ///     [`PacketParser::next`] to get the next packet, or the
    ///     maximum recursion depth was reached, then the packets can
    ///     be stored here as a byte stream.  (If the caller so
    ///     chooses, the content can be parsed later using the regular
    ///     deserialization routines, since the content is just an
    ///     OpenPGP message.)
    ///
    ///   [`PacketParser::next`]: ../parse/struct.PacketParser.html#method.next
    ///
    /// Note: if some of a packet's data is processed, and the
    /// `PacketParser` is configured to buffer unread content, then
    /// this is not the packet's entire content; it is just the unread
    /// content.
    body: Vec<u8>,

    /// We compute a digest over the body to implement comparison.
    body_digest: Vec<u8>,
}

const CONTAINER_BODY_HASH: HashAlgorithm = HashAlgorithm::SHA256;

impl PartialEq for Container {
    fn eq(&self, other: &Container) -> bool {
        self.packets == other.packets
            && self.body_digest == other.body_digest
    }
}

impl Eq for Container {}

impl Hash for Container {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.packets.hash(state);
        self.body_digest.hash(state);
    }
}

impl Default for Container {
    fn default() -> Self {
        Self {
            packets: Vec::with_capacity(0),
            body: Vec::with_capacity(0),
            body_digest: Self::empty_body_digest(),
        }
    }
}

impl From<Vec<Packet>> for Container {
    fn from(packets: Vec<Packet>) -> Self {
        Self {
            packets,
            body: Vec::with_capacity(0),
            body_digest: Self::empty_body_digest(),
        }
    }
}

impl fmt::Debug for Container {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let threshold = 16;
        let prefix = &self.body[..std::cmp::min(threshold, self.body.len())];
        let mut prefix_fmt = crate::fmt::hex::encode(prefix);
        if self.body.len() > threshold {
            prefix_fmt.push_str("...");
        }
        prefix_fmt.push_str(&format!(" ({} bytes)", self.body.len())[..]);

        f.debug_struct("Container")
            .field("packets", &self.packets)
            .field("body", &prefix_fmt)
            .field("body_digest", &self.body_digest())
            .finish()
    }
}

impl Container {
    /// Returns a reference to this Packet's children.
    pub fn children_ref(&self) -> &[Packet] {
        &self.packets
    }

    /// Returns a mutable reference to this Packet's children.
    pub fn children_mut(&mut self) -> &mut Vec<Packet> {
        &mut self.packets
    }

    /// Returns an iterator over the packet's descendants.  The
    /// descendants are visited in depth-first order.
    pub fn descendants(&self) -> Iter {
        return Iter {
            // Iterate over each packet in the message.
            children: self.children(),
            child: None,
            grandchildren: None,
            depth: 0,
        };
    }

    /// Returns an iterator over the packet's immediate children.
    pub fn children<'a>(&'a self) -> slice::Iter<'a, Packet> {
        self.packets.iter()
    }

    /// Returns an `IntoIter` over the packet's immediate children.
    pub fn into_children(self) -> vec::IntoIter<Packet> {
        self.packets.into_iter()
    }

    /// Retrieves the packet's body.
    ///
    /// Packets can store a sequence of bytes as body, e.g. if the
    /// maximum recursion level is reached while parsing a sequence of
    /// packets, the container's body is stored as is.
    pub fn body(&self) -> &[u8] {
        &self.body
    }

    /// Sets the packet's body.
    ///
    /// Setting the body clears the old body, or any of the packet's
    /// descendants.
    pub fn set_body(&mut self, data: Vec<u8>) -> Vec<u8> {
        self.packets.clear();
        let mut h = Self::make_body_hash();
        h.update(&data);
        self.set_body_hash(h);
        std::mem::replace(&mut self.body, data)
    }

    /// Returns the hash for the empty body.
    fn empty_body_digest() -> Vec<u8> {
        lazy_static!{
            static ref DIGEST: Vec<u8> = {
                let mut h = Container::make_body_hash();
                let mut d = vec![0; h.digest_size()];
                h.digest(&mut d);
                d
            };
        }

        DIGEST.clone()
    }

    /// Creates a hash context for hashing the body.
    pub(crate) // For parse.rs
    fn make_body_hash() -> hash::Context {
        CONTAINER_BODY_HASH.context()
            .expect("CONTAINER_BODY_HASH must be implemented")
    }

    /// Hashes content that has been streamed.
    pub(crate) // For parse.rs
    fn set_body_hash(&mut self, mut h: hash::Context) {
        self.body_digest.resize(h.digest_size(), 0);
        h.digest(&mut self.body_digest);
    }

    pub(crate)
    fn body_digest(&self) -> String {
        crate::fmt::hex::encode(&self.body_digest)
    }

    pub(crate) // For parse.rs
    fn body_mut(&mut self) -> &mut Vec<u8> {
        &mut self.body
    }

    // Converts an indentation level to whitespace.
    fn indent(depth: usize) -> &'static str {
        use std::cmp;

        let s = "                                                  ";
        return &s[0..cmp::min(depth, s.len())];
    }

    // Pretty prints the container to stderr.
    //
    // This function is primarily intended for debugging purposes.
    //
    // `indent` is the number of spaces to indent the output.
    pub(crate) fn pretty_print(&self, indent: usize) {
        for (i, p) in self.packets.iter().enumerate() {
            eprintln!("{}{}: {:?}",
                      Self::indent(indent), i + 1, p);
            if let Some(ref children) = self.packets[i].container_ref() {
                children.pretty_print(indent + 1);
            }
        }
    }
}

macro_rules! the_common_container_forwards {
    () => {
        /// Returns a reference to the container.
        pub(crate) fn container_ref(&self) -> &packet::Container {
            &self.container
        }

        /// Returns a mutable reference to the container.
        pub(crate) fn container_mut(&mut self) -> &mut packet::Container {
            &mut self.container
        }

        /// Gets a reference to the this packet's body.
        pub fn body(&self) -> &[u8] {
            self.container.body()
        }

        /// Gets a mutable reference to the this packet's body.
        pub fn body_mut(&mut self) -> &mut Vec<u8> {
            self.container.body_mut()
        }

        /// Sets the this packet's body.
        pub fn set_body(&mut self, data: Vec<u8>) -> Vec<u8> {
            self.container.set_body(data)
        }
    };
}

macro_rules! impl_body_forwards {
    ($typ:ident) => {
        /// This packet implements the unprocessed container
        /// interface.
        ///
        /// Container packets like this one can contain unprocessed
        /// data.
        impl $typ {
            the_common_container_forwards!();
        }
    };
}

macro_rules! impl_container_forwards {
    ($typ:ident) => {
        /// This packet implements the container interface.
        ///
        /// Container packets can contain other packets, unprocessed
        /// data, or both.
        impl $typ {
            the_common_container_forwards!();

            /// Returns a reference to this Packet's children.
            pub fn children_ref(&self) -> &[Packet] {
                self.container.children_ref()
            }

            /// Returns a mutable reference to this Packet's children.
            pub fn children_mut(&mut self) -> &mut Vec<Packet> {
                self.container.children_mut()
            }

            /// Returns an iterator over the packet's immediate children.
            pub fn children<'a>(&'a self) -> impl Iterator<Item = &'a Packet> {
                self.container.children()
            }

            /// Returns an iterator over all of the packet's descendants, in
            /// depth-first order.
            pub fn descendants(&self) -> super::Iter {
                self.container.descendants()
            }
        }
    };
}

impl Packet {
    pub(crate) // for packet_pile.rs
    fn container_ref(&self) -> Option<&Container> {
        match self {
            Packet::CompressedData(p) => Some(p.container_ref()),
            Packet::SEIP(p) => Some(p.container_ref()),
            Packet::AED(p) => Some(p.container_ref()),
            Packet::Literal(p) => Some(p.container_ref()),
            Packet::Unknown(p) => Some(p.container_ref()),
            _ => None,
        }
    }

    pub(crate) // for packet_pile.rs
    fn container_mut(&mut self) -> Option<&mut Container> {
        match self {
            Packet::CompressedData(p) => Some(p.container_mut()),
            Packet::SEIP(p) => Some(p.container_mut()),
            Packet::AED(p) => Some(p.container_mut()),
            Packet::Literal(p) => Some(p.container_mut()),
            Packet::Unknown(p) => Some(p.container_mut()),
            _ => None,
        }
    }

    /// Returns an iterator over the packet's immediate children.
    pub(crate) fn children<'a>(&'a self) -> impl Iterator<Item = &'a Packet> {
        self.container_ref().map(|c| c.children()).unwrap_or_else(|| [].iter())
    }

    /// Returns an iterator over all of the packet's descendants, in
    /// depth-first order.
    pub(crate) fn descendants(&self) -> Iter {
        self.container_ref().map(|c| c.descendants()).unwrap_or_default()
    }

    /// Retrieves the packet's body.
    ///
    /// Packets can store a sequence of bytes as body, e.g. if the
    /// maximum recursion level is reached while parsing a sequence of
    /// packets, the container's body is stored as is.
    pub(crate) fn body(&self) -> Option<&[u8]> {
        self.container_ref().map(|c| c.body())
    }
}