1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//! String-to-Key (S2K) specifiers.
//!
//! String-to-key (S2K) specifiers are used to convert password
//! strings into symmetric-key encryption/decryption keys.  See
//! [Section 3.7 of RFC 4880].
//!
//!   [Section 3.7 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-3.7

use crate::Error;
use crate::Result;
use crate::HashAlgorithm;
use crate::crypto::Password;
use crate::crypto::SessionKey;

use std::fmt;

use quickcheck::{Arbitrary, Gen};
use rand::Rng;

/// String-to-Key (S2K) specifiers.
///
/// String-to-key (S2K) specifiers are used to convert password
/// strings into symmetric-key encryption/decryption keys.  See
/// [Section 3.7 of RFC 4880].
///
///   [Section 3.7 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-3.7
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum S2K {
    /// Simply hashes the password.
    Simple {
        /// Hash used for key derivation.
        hash: HashAlgorithm
    },
    /// Hashes the password with a public `salt` value.
    Salted {
        /// Hash used for key derivation.
        hash: HashAlgorithm,
        /// Public salt value mixed into the password.
        salt: [u8; 8],
    },
    /// Repeatently hashes the password with a public `salt` value.
    Iterated {
        /// Hash used for key derivation.
        hash: HashAlgorithm,
        /// Public salt value mixed into the password.
        salt: [u8; 8],
        /// Number of bytes to hash.
        hash_bytes: u32,
    },
    /// Private S2K algorithm
    Private(u8),
    /// Unknown S2K algorithm
    Unknown(u8),
}

impl Default for S2K {
    fn default() -> Self {
        let mut salt = [0u8; 8];
        crate::crypto::random(&mut salt);
        S2K::Iterated {
            // SHA2-256, being optimized for implementations on
            // architectures with a word size of 32 bit, has a more
            // consistent runtime across different architectures than
            // SHA2-512.  Furthermore, the digest size is large enough
            // for every cipher algorithm currently in use.
            hash: HashAlgorithm::SHA256,
            salt: salt,
            // This is the largest count that OpenPGP can represent.
            // On moderate machines, like my Intel(R) Core(TM) i5-2400
            // CPU @ 3.10GHz, it takes ~354ms to derive a key.
            hash_bytes: 65_011_712,
        }
    }
}

impl S2K {
    /// Convert the string to a key using the S2K's parameters.
    pub fn derive_key(&self, password: &Password, key_size: usize)
    -> Result<SessionKey> {
        match self {
            &S2K::Simple { hash } | &S2K::Salted { hash, .. }
            | &S2K::Iterated { hash, .. } => password.map(|string| {
                let mut hash = hash.context()?;

                // If the digest length is shorter than the key length,
                // then we need to concatenate multiple hashes, each
                // preloaded with i 0s.
                let hash_sz = hash.digest_size();
                let num_contexts = (key_size + hash_sz - 1) / hash_sz;
                let mut zeros = Vec::with_capacity(num_contexts + 1);
                let mut ret = vec![0u8; key_size];

                for data in ret.chunks_mut(hash_sz) {
                    hash.update(&zeros[..]);

                    match self {
                        &S2K::Simple { .. } => {
                            hash.update(string);
                        }
                        &S2K::Salted { ref salt, .. } => {
                            hash.update(salt);
                            hash.update(string);
                        }
                        &S2K::Iterated { ref salt, hash_bytes, .. }
                        if (hash_bytes as usize) < salt.len() + string.len() =>
                        {
                            // Independent of what the hash count is, we
                            // always hash the whole salt and password once.
                            hash.update(&salt[..]);
                            hash.update(&string);
                        },
                        &S2K::Iterated { ref salt, hash_bytes, .. } => {
                            // Unroll the processing loop N times.
                            const N: usize = 16;
                            let data_len = salt.len() + string.len();
                            let octs_per_iter = N * data_len;
                            let mut data: SessionKey =
                                vec![0u8; octs_per_iter].into();
                            let full = hash_bytes as usize / octs_per_iter;
                            let tail = hash_bytes as usize - (full * octs_per_iter);

                            for i in 0..N {
                                let o = data_len * i;
                                data[o..o + salt.len()]
                                    .clone_from_slice(salt);
                                data[o + salt.len()..o + data_len]
                                    .clone_from_slice(string);
                            }

                            for _ in 0..full {
                                hash.update(&data);
                            }

                            if tail != 0 {
                                hash.update(&data[0..tail]);
                            }
                        }
                        &S2K::Unknown(_) | &S2K::Private(_) => unreachable!(),
                    }

                    hash.digest(data);
                    zeros.push(0);
                }

                Ok(ret.into())
            }),
            &S2K::Unknown(u) | &S2K::Private(u) =>
                Err(Error::MalformedPacket(
                        format!("Unknown S2K type {:#x}", u)).into()),
        }
    }

    /// This function returns an encodabled iteration count larger or
    /// equal `hash_bytes`.
    ///
    /// Not all iteration counts are encodable as *Iterated and Salted
    /// S2K*.  The largest encodable hash count is `0x3e00000`.
    pub fn nearest_hash_count(hash_bytes: usize) -> u32 {
        use std::usize;

        match hash_bytes {
            0..=1024 => 1024,
            1025..=2048 => hash_bytes as u32,
            0x3e00001..=usize::MAX => 0x3e00000,
            hash_bytes => {
                let hash_bytes = hash_bytes as u32;
                let msb = 32 - hash_bytes.leading_zeros();
                let mantissa_mask = 0b1111_000000 << (msb - 11);
                let tail_mask = (1 << (msb - 11)) - 1;
                let mantissa = (hash_bytes & mantissa_mask) >> (msb - 5);
                let exp = if msb < 11 { 0 } else { msb - 11 };

                if hash_bytes & tail_mask != 0 {
                    if mantissa < 0b1111 {
                        Self::decode_count((mantissa as u8 + 1) | exp as u8)
                    } else {
                        Self::decode_count(mantissa as u8 | (exp as u8 + 1))
                    }
                } else {
                    hash_bytes
                }
            }
        }
     }

    /// Decodes the OpenPGP encoding of the number of bytes to hash.
    pub fn decode_count(coded: u8) -> u32 {
        use std::cmp;

        let mantissa = 16 + (coded as u32 & 15);
        let exp = (coded as u32 >> 4) + 6;

        mantissa << cmp::min(32 - 5, exp)
    }

    /// Converts `hash_bytes` into coded count representation.
    ///
    /// # Errors
    ///
    /// Fails with `Error::InvalidArgument` if `hash_bytes` cannot be
    /// encoded. See also [`S2K::nearest_hash_count()`].
    ///
    /// [`S2K::nearest_hash_count()`]: #method.nearest_hash_count
    pub fn encode_count(hash_bytes: u32) -> Result<u8> {
        // eeee.mmmm -> (16 + mmmm) * 2^(6 + e)

        let msb = 32 - hash_bytes.leading_zeros();
        let (mantissa_mask, tail_mask) = match msb {
            0..=10 => {
                return Err(Error::InvalidArgument(
                    format!("S2K: cannot encode iteration count of {}",
                            hash_bytes)).into());
            }
            11..=32 => {
                let m = 0b1111_000000 << (msb - 11);
                let t = 1 << (msb - 11);

                (m, t - 1)
            }
            _ => unreachable!()
        };
        let exp = if msb < 11 { 0 } else { msb - 11 };
        let mantissa = (hash_bytes & mantissa_mask) >> (msb - 5);

        if tail_mask & hash_bytes != 0 {
            return Err(Error::InvalidArgument(
                format!("S2K: cannot encode iteration count of {}",
                        hash_bytes)).into());
        }

        Ok(mantissa as u8 | (exp as u8) << 4)
    }
}

impl fmt::Display for S2K {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            S2K::Simple{ hash } =>
                f.write_fmt(format_args!("Simple S2K with {}", hash)),
            S2K::Salted{ hash, salt } => {
                f.write_fmt(
                    format_args!("Salted S2K with {} and salt\
                        {:x}{:x}{:x}{:x}{:x}{:x}{:x}{:x}",
                    hash,
                    salt[0], salt[1], salt[2], salt[3],
                    salt[4], salt[5], salt[6], salt[7]))
            }
            S2K::Iterated{ hash, salt, hash_bytes, } => {
                f.write_fmt(
                    format_args!("Iterated and Salted S2K with {}, \
                      salt {:x}{:x}{:x}{:x}{:x}{:x}{:x}{:x} and \
                      {} bytes to hash",
                    hash,
                    salt[0], salt[1], salt[2], salt[3],
                    salt[4], salt[5], salt[6], salt[7],
                    hash_bytes))
            }
            S2K::Private(u) =>
                f.write_fmt(format_args!("Private/Experimental S2K {}", u)),
            S2K::Unknown(u) => f.write_fmt(format_args!("Unknown S2K {}", u)),
        }
    }
}

impl Arbitrary for S2K {
    fn arbitrary<G: Gen>(g: &mut G) -> Self {
        match g.gen_range(0, 5) {
            0 => S2K::Simple{ hash: HashAlgorithm::arbitrary(g) },
            1 => S2K::Salted{
                hash: HashAlgorithm::arbitrary(g),
                salt: g.gen(),
            },
            2 => S2K::Iterated{
                hash: HashAlgorithm::arbitrary(g),
                salt: g.gen(),
                hash_bytes: S2K::nearest_hash_count(g.gen()),
            },
            3 => S2K::Private(g.gen_range(100, 111)),
            4 => S2K::Unknown(g.gen_range(4, 100)),
            _ => unreachable!(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::fmt::to_hex;
    use crate::SymmetricAlgorithm;
    use crate::Packet;
    use crate::parse::{Parse, PacketParser};
    use crate::serialize::Serialize;

    #[test]
    fn s2k_parser_test() {
        use crate::packet::SKESK;

        struct Test<'a> {
            filename: &'a str,
            s2k: S2K,
            cipher_algo: SymmetricAlgorithm,
            password: Password,
            key_hex: &'a str,
        };

        // Note: this test only works with SK-ESK packets that don't
        // contain an encrypted session key, i.e., the session key is
        // the result of the s2k function.  gpg generates this type of
        // SK-ESK packet when invoked with -c, but not -e.  (When
        // invoked with -c and -e, it generates SK-ESK packets that
        // include an encrypted session key.)
        let tests = [
            Test {
                filename: "mode-0-password-1234.gpg",
                cipher_algo: SymmetricAlgorithm::AES256,
                s2k: S2K::Simple{ hash: HashAlgorithm::SHA1, },
                password: "1234".into(),
                key_hex: "7110EDA4D09E062AA5E4A390B0A572AC0D2C0220F352B0D292B65164C2A67301",
            },
            Test {
                filename: "mode-1-password-123456-1.gpg",
                cipher_algo: SymmetricAlgorithm::AES256,
                s2k: S2K::Salted{
                    hash: HashAlgorithm::SHA1,
                    salt: [0xa8, 0x42, 0xa7, 0xa9, 0x59, 0xfa, 0x42, 0x2a],
                },
                password: "123456".into(),
                key_hex: "8B79077CA448F6FB3D3AD2A264D3B938D357C9FB3E41219FD962DF960A9AFA08",
            },
            Test {
                filename: "mode-1-password-foobar-2.gpg",
                cipher_algo: SymmetricAlgorithm::AES256,
                s2k: S2K::Salted{
                    hash: HashAlgorithm::SHA1,
                    salt: [0xbc, 0x95, 0x58, 0x45, 0x81, 0x3c, 0x7c, 0x37],
                },
                password: "foobar".into(),
                key_hex: "B7D48AAE9B943B22A4D390083E8460B5EDFA118FE1688BF0C473B8094D1A8D10",
            },
            Test {
                filename: "mode-3-password-qwerty-1.gpg",
                cipher_algo: SymmetricAlgorithm::AES256,
                s2k: S2K::Iterated {
                    hash: HashAlgorithm::SHA1,
                    salt: [0x78, 0x45, 0xf0, 0x5b, 0x55, 0xf7, 0xb4, 0x9e],
                    hash_bytes: S2K::decode_count(241),
                },
                password: "qwerty".into(),
                key_hex: "575AD156187A3F8CEC11108309236EB499F1E682F0D1AFADFAC4ECF97613108A",
            },
            Test {
                filename: "mode-3-password-9876-2.gpg",
                cipher_algo: SymmetricAlgorithm::AES256,
                s2k: S2K::Iterated {
                    hash: HashAlgorithm::SHA1,
                    salt: [0xb9, 0x67, 0xea, 0x96, 0x53, 0xdb, 0x6a, 0xc8],
                    hash_bytes: S2K::decode_count(43),
                },
                password: "9876".into(),
                key_hex: "736C226B8C64E4E6D0325C6C552EF7C0738F98F48FED65FD8C93265103EFA23A",
            },
            Test {
                filename: "mode-3-aes192-password-123.gpg",
                cipher_algo: SymmetricAlgorithm::AES192,
                s2k: S2K::Iterated {
                    hash: HashAlgorithm::SHA1,
                    salt: [0x8f, 0x81, 0x74, 0xc5, 0xd9, 0x61, 0xc7, 0x79],
                    hash_bytes: S2K::decode_count(238),
                },
                password: "123".into(),
                key_hex: "915E96FC694E7F90A6850B740125EA005199C725F3BD27E3",
            },
            Test {
                filename: "mode-3-twofish-password-13-times-0123456789.gpg",
                cipher_algo: SymmetricAlgorithm::Twofish,
                s2k: S2K::Iterated {
                    hash: HashAlgorithm::SHA1,
                    salt: [0x51, 0xed, 0xfc, 0x15, 0x45, 0x40, 0x65, 0xac],
                    hash_bytes: S2K::decode_count(238),
                },
                password: "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789".into(),
                key_hex: "EA264FADA5A859C40D88A159B344ECF1F51FF327FDB3C558B0A7DC299777173E",
            },
            Test {
                filename: "mode-3-aes128-password-13-times-0123456789.gpg",
                cipher_algo: SymmetricAlgorithm::AES128,
                s2k: S2K::Iterated {
                    hash: HashAlgorithm::SHA1,
                    salt: [0x06, 0xe4, 0x61, 0x5c, 0xa4, 0x48, 0xf9, 0xdd],
                    hash_bytes: S2K::decode_count(238),
                },
                password: "0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789".into(),
                key_hex: "F3D0CE52ED6143637443E3399437FD0F",
            },
        ];

        for test in tests.iter() {
            let path = crate::tests::message(&format!("s2k/{}", test.filename));
            let pp = PacketParser::from_bytes(path).unwrap().unwrap();
            if let Packet::SKESK(SKESK::V4(ref skesk)) = pp.packet {
                assert_eq!(skesk.symmetric_algo(), test.cipher_algo);
                assert_eq!(skesk.s2k(), &test.s2k);

                let key = skesk.s2k().derive_key(
                    &test.password,
                    skesk.symmetric_algo().key_size().unwrap());
                if let Ok(key) = key {
                    let key = to_hex(&key[..], false);
                    assert_eq!(key, test.key_hex);
                } else {
                    panic!("Session key: None!");
                }
            } else {
                panic!("Wrong packet!");
            }

            // Get the next packet.
            let (_, ppr) = pp.next().unwrap();
            assert!(ppr.is_none());
        }
    }

    quickcheck! {
        fn s2k_roundtrip(s2k: S2K) -> bool {
            use crate::serialize::SerializeInto;

            eprintln!("in {:?}", s2k);
            use std::io::Cursor;

            let mut w = Cursor::new(Vec::new());
            let l = s2k.serialized_len();
            s2k.serialize(&mut w).unwrap();
            let buf = w.into_inner();
            eprintln!("raw: {:?}", buf);

            assert_eq!(buf.len(), l);
            let mut r = Cursor::new(buf.into_boxed_slice());
            let s = S2K::from_reader(&mut r).unwrap();
            eprintln!("out {:?}", s);

            s2k == s
        }
    }

    quickcheck! {
        fn s2k_display(s2k: S2K) -> bool {
            let s = format!("{}", s2k);
            !s.is_empty()
        }
    }

    quickcheck! {
        fn s2k_parse(s2k: S2K) -> bool {
            match s2k {
                S2K::Unknown(u) => (u > 3 && u < 100) || u == 2 || u > 110,
                S2K::Private(u) => u >= 100 && u <= 110,
                _ => true
            }
        }
    }

    #[test]
    fn s2k_coded_count_roundtrip() {
        for cc in 0..0x100usize {
            let hash_bytes = S2K::decode_count(cc as u8);
            assert!(hash_bytes >= 1024
                    && S2K::encode_count(hash_bytes).unwrap() == cc as u8);
        }
    }

    quickcheck!{
        fn s2k_coded_count_approx(i: usize) -> bool {
            let approx = S2K::nearest_hash_count(i);
            let cc = S2K::encode_count(approx).unwrap();

            (approx as usize >= i || i > 0x3e00000) && S2K::decode_count(cc) == approx
        }
    }
}