1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use core::{
    fmt,
    iter::{FromIterator, FusedIterator},
    ops::RangeBounds,
};

use alloc::vec::Vec;

use crate::{Segment, SegmentSet};
// TODO: all doctests

// /// See [`alloc::collections::btree_set::ITER_PERFORMANCE_TIPPING_SIZE_DIFF`]
// ///
// /// The std library uses `ITER_PERFORMANCE_TIPPING_SIZE_DIFF` to split whether
// /// to iterate two items in tandem or search through one (the larger) while
// /// iterating through the smaller. Let's trust they know what they're doing,
// /// though that tipping point may be different for ranges that require an extra
// /// step in the search (to find the last range starting BEFORE a point).
// const ITER_PERFORMANCE_TIPPING_SIZE_DIFF: usize = 16;

impl<T> SegmentSet<T> {
    pub fn iter(&self) -> Iter<'_, T> {
        Iter(self.map.ranges())
    }

    pub fn len(&self) -> usize {
        self.map.len()
    }

    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    /// Converts the set into a [`Vec`] by chaining [`into_iter`] and [`collect`]
    pub fn into_vec(self) -> Vec<Segment<T>> {
        self.into_iter().collect()
    }

    // range?

    // pub fn iter_complement(&self) -> impl Iterator<Item = Range<T>> {
    //     self.map.iter_complement()
    // }
    // pub fn gaps(&self) -> impl Iterator<Item = Range<T>>
    // where
    //     T: Ord + Clone,
    // {
    //     self.map.gaps()
    // }

    // /// Gets an iterator over all the maximally-sized ranges
    // /// contained in `outer_range` that are not covered by
    // /// any range stored in the set.
    // ///
    // /// The iterator element type is `Range<T>`.
    // ///
    // /// NOTE: Calling `gaps` eagerly finds the first gap,
    // /// even if the iterator is never consumed.
    // pub fn gaps_in<R: RangeBounds<T>>(&self, outer_range: R) -> impl Iterator<Item = Range<T>> {
    //     self.map.gaps_in(outer_range).map(|(k, v)| k)
    // }

    // TODO
    // pub fn extend_into_gaps(&mut self)
}

// impl<T: Clone + Ord> FromIterator<Range<T>> for SegmentSet<T> {
//     fn from_iter<I: IntoIterator<Item = Range<T>>>(iter: I) -> SegmentSet<T> {
//         let mut set = Self::new();
//         set.extend(iter);
//         set
//     }
// }

impl<Item: RangeBounds<T>, T: Clone + Ord> FromIterator<Item> for SegmentSet<T> {
    fn from_iter<I: IntoIterator<Item = Item>>(iter: I) -> Self {
        let mut set = Self::new();
        for item in iter {
            set.insert(item);
        }
        set
    }
}

impl<T: Clone + Ord> Extend<Segment<T>> for SegmentSet<T> {
    /// Insert all the items from `iter` into `self`.
    ///
    /// **NOTE**: Inserted items will overwrite existing ranges in `self` if
    /// they overlap. If you don't want to overwrite existing ranges, use
    /// [`extend_into_gaps`].
    ///
    /// Clone is required for insertion, since we can't guarantee elements in `iter`
    /// are ordered or non-overlapping, so ranges may need to be split.
    #[inline]
    fn extend<Iter: IntoIterator<Item = Segment<T>>>(&mut self, iter: Iter) {
        // self.map.extend(iter.into_iter().map(|t| (t, ())))
        iter.into_iter().for_each(move |range| {
            self.insert(range);
        });
    }

    // #[inline]
    // fn extend_one(&mut self, elem: T) {
    //     self.insert(elem);
    // }
}

impl<'a, T: 'a + Ord + Copy> Extend<&'a Segment<T>> for SegmentSet<T> {
    fn extend<I: IntoIterator<Item = &'a Segment<T>>>(&mut self, iter: I) {
        self.extend(iter.into_iter().cloned());
    }

    // #[inline]
    // fn extend_one(&mut self, &elem: &'a T) {
    //     self.insert(elem);
    // }
}

#[derive(Clone)]
pub struct Iter<'a, T: 'a>(crate::map::iterators::Ranges<'a, T, ()>);

impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Iter").field(&self.0.clone()).finish()
    }
}
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a Segment<T>;

    fn next(&mut self) -> Option<&'a Segment<T>> {
        self.0.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }

    fn last(mut self) -> Option<&'a Segment<T>> {
        self.next_back()
    }

    fn min(mut self) -> Option<&'a Segment<T>> {
        self.next()
    }

    fn max(mut self) -> Option<&'a Segment<T>> {
        self.next_back()
    }
}

impl<T> FusedIterator for Iter<'_, T> {}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
    fn next_back(&mut self) -> Option<&'a Segment<T>> {
        self.0.next_back()
    }
}

impl<T> ExactSizeIterator for Iter<'_, T> {
    fn len(&self) -> usize {
        self.0.len()
    }
}

impl<T> IntoIterator for SegmentSet<T> {
    type Item = Segment<T>;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter(self.map.into_iter())
    }
}

pub struct IntoIter<T>(crate::map::iterators::IntoIter<T, ()>);
impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}
impl<T> Iterator for IntoIter<T> {
    type Item = Segment<T>;
    fn next(&mut self) -> Option<Segment<T>> {
        self.0.next().map(|(range, _)| range)
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}
impl<T> DoubleEndedIterator for IntoIter<T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|(range, _)| range)
    }
}
impl<T> FusedIterator for IntoIter<T> {}