1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! Implements [`SerializedSignature`] and related types.
//!
//! DER-serialized signatures have the issue that they can have different lengths.
//! We want to avoid using `Vec` since that would require allocations making the code slower and
//! unable to run on platforms without allocator. We implement a special type to encapsulate
//! serialized signatures and since it's a bit more complicated it has its own module.

pub use into_iter::IntoIter;

use core::{fmt, ops};
use crate::Error;
use super::Signature;

pub(crate) const MAX_LEN: usize = 72;

/// A DER serialized Signature
#[derive(Copy, Clone)]
pub struct SerializedSignature {
    data: [u8; MAX_LEN],
    len: usize,
}

impl fmt::Debug for SerializedSignature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(self, f)
    }
}

impl fmt::Display for SerializedSignature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for v in self {
            write!(f, "{:02x}", v)?;
        }
        Ok(())
    }
}

impl PartialEq for SerializedSignature {
    #[inline]
    fn eq(&self, other: &SerializedSignature) -> bool {
        **self == **other
    }
}

impl AsRef<[u8]> for SerializedSignature {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self
    }
}

impl ops::Deref for SerializedSignature {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &[u8] {
        &self.data[..self.len]
    }
}

impl Eq for SerializedSignature {}

impl IntoIterator for SerializedSignature {
    type IntoIter = IntoIter;
    type Item = u8;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self)
    }
}

impl<'a> IntoIterator for &'a SerializedSignature {
    type IntoIter = core::slice::Iter<'a, u8>;
    type Item = &'a u8;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl SerializedSignature {
    /// Creates `SerializedSignature` from data and length.
    ///
    /// ## Panics
    ///
    /// If `len` > `MAX_LEN`
    #[inline]
    pub(crate) fn from_raw_parts(data: [u8; MAX_LEN], len: usize) -> Self {
        assert!(len <= MAX_LEN, "attempt to set length to {} but the maximum is {}", len, MAX_LEN);
        SerializedSignature {
            data,
            len,
        }
    }

    /// Get the capacity of the underlying data buffer.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.data.len()
    }

    /// Get the len of the used data.
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Set the length of the object.
    #[inline]
    pub(crate) fn set_len_unchecked(&mut self, len: usize) {
        self.len = len;
    }

    /// Convert the serialized signature into the Signature struct.
    /// (This DER deserializes it)
    #[inline]
    pub fn to_signature(&self) -> Result<Signature, Error> {
        Signature::from_der(self)
    }

    /// Create a SerializedSignature from a Signature.
    /// (this DER serializes it)
    #[inline]
    pub fn from_signature(sig: &Signature) -> SerializedSignature {
        sig.serialize_der()
    }

    /// Check if the space is zero.
    #[inline]
    pub fn is_empty(&self) -> bool { self.len() == 0 }
}

/// Separate mod to prevent outside code accidentally breaking invariants.
mod into_iter {
    use super::*;

    /// Owned iterator over the bytes of [`SerializedSignature`]
    ///
    /// Created by [`IntoIterator::into_iter`] method.
    // allowed because of https://github.com/rust-lang/rust/issues/98348
    #[allow(missing_copy_implementations)]
    #[derive(Debug, Clone)]
    pub struct IntoIter {
        signature: SerializedSignature,
        // invariant: pos <= signature.len()
        pos: usize,
    }

    impl IntoIter {
        #[inline]
        pub(crate) fn new(signature: SerializedSignature) -> Self {
            IntoIter {
                signature,
                // for all unsigned n: 0 <= n
                pos: 0,
            }
        }

        /// Returns the remaining bytes as a slice.
        ///
        /// This method is analogous to [`core::slice::Iter::as_slice`].
        #[inline]
        pub fn as_slice(&self) -> &[u8] {
            &self.signature[self.pos..]
        }
    }

    impl Iterator for IntoIter {
        type Item = u8;

        #[inline]
        fn next(&mut self) -> Option<Self::Item> {
            let byte = *self.signature.get(self.pos)?;
            // can't overflow or break invariant because if pos is too large we return early
            self.pos += 1;
            Some(byte)
        }

        #[inline]
        fn size_hint(&self) -> (usize, Option<usize>) {
            // can't underlflow thanks to the invariant
            let len = self.signature.len() - self.pos;
            (len, Some(len))
        }

        // override for speed
        #[inline]
        fn nth(&mut self, n: usize) -> Option<Self::Item> {
            if n >= self.len() {
                // upholds invariant becasue the values will be equal
                self.pos = self.signature.len();
                None
            } else {
                // if n < signtature.len() - self.pos then n + self.pos < signature.len() which neither
                // overflows nor breaks the invariant
                self.pos += n;
                self.next()
            }
        }
    }

    impl ExactSizeIterator for IntoIter {}

    impl core::iter::FusedIterator for IntoIter {}

    impl DoubleEndedIterator for IntoIter {
        #[inline]
        fn next_back(&mut self) -> Option<Self::Item> {
            if self.pos == self.signature.len() {
                return None;
            }

            // if len is 0 then pos is also 0 thanks to the invariant so we would return before we
            // reach this
            let new_len = self.signature.len() - 1;
            let byte = self.signature[new_len];
            self.signature.set_len_unchecked(new_len);
            Some(byte)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{SerializedSignature, MAX_LEN};

    #[test]
    fn iterator_ops_are_homomorphic() {
        let mut fake_signature_data = [0; MAX_LEN];
        // fill it with numbers 0 - 71
        for (i, byte) in fake_signature_data.iter_mut().enumerate() {
            // up to MAX_LEN
            *byte = i as u8;
        }

        let fake_signature = SerializedSignature { data: fake_signature_data, len: MAX_LEN };

        let mut iter1 = fake_signature.into_iter();
        let mut iter2 = fake_signature.iter();

        // while let so we can compare size_hint and as_slice
        while let (Some(a), Some(b)) = (iter1.next(), iter2.next()) {
            assert_eq!(a, *b);
            assert_eq!(iter1.size_hint(), iter2.size_hint());
            assert_eq!(iter1.as_slice(), iter2.as_slice());
        }

        let mut iter1 = fake_signature.into_iter();
        let mut iter2 = fake_signature.iter();

        // manual next_back instead of rev() so that we can check as_slice()
        // if next_back is implemented correctly then rev() is also correct - provided by `core`
        while let (Some(a), Some(b)) = (iter1.next_back(), iter2.next_back()) {
            assert_eq!(a, *b);
            assert_eq!(iter1.size_hint(), iter2.size_hint());
            assert_eq!(iter1.as_slice(), iter2.as_slice());
        }
    }
}