1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Bitcoin secp256k1 bindings
// Written in 2014 by
//   Dawid Ciężarkiewicz
//   Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # Public and secret keys

#[cfg(any(test, feature = "rand"))] use rand::Rng;

use std::{fmt, mem, str};

use super::{from_hex, Secp256k1};
use super::Error::{self, InvalidPublicKey, InvalidSecretKey};
use Signing;
use Verification;
use constants;
use ffi;

/// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
impl_pretty_debug!(SecretKey);

impl fmt::Display for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for ch in &self.0[..] {
            write!(f, "{:02x}", *ch)?;
        }
        Ok(())
    }
}

impl str::FromStr for SecretKey {
    type Err = Error;
    fn from_str(s: &str) -> Result<SecretKey, Error> {
        let mut res = [0; constants::SECRET_KEY_SIZE];
        match from_hex(s, &mut res) {
            Ok(constants::SECRET_KEY_SIZE) => Ok(SecretKey(res)),
            _ => Err(Error::InvalidSecretKey)
        }
    }
}

/// The number 1 encoded as a secret key
/// Deprecated; `static` is not what I want; use `ONE_KEY` instead
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0, 0, 0, 1]);

/// The number 0 encoded as a secret key
pub const ZERO_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0, 0, 0, 0, 0]);

/// The number 1 encoded as a secret key
pub const ONE_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0, 0, 0, 1]);

/// A Secp256k1 public key, used for verification of signatures
#[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord, Hash)]
pub struct PublicKey(ffi::PublicKey);

impl fmt::Display for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let ser = self.serialize();
        for ch in &ser[..] {
            write!(f, "{:02x}", *ch)?;
        }
        Ok(())
    }
}

impl str::FromStr for PublicKey {
    type Err = Error;
    fn from_str(s: &str) -> Result<PublicKey, Error> {
        let secp = Secp256k1::without_caps();
        let mut res = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
        match from_hex(s, &mut res) {
            Ok(constants::PUBLIC_KEY_SIZE) => {
                PublicKey::from_slice(
                    &secp,
                    &res[0..constants::PUBLIC_KEY_SIZE]
                )
            }
            Ok(constants::UNCOMPRESSED_PUBLIC_KEY_SIZE) => {
                PublicKey::from_slice(&secp, &res)
            }
            _ => Err(Error::InvalidPublicKey)
        }
    }
}

#[cfg(any(test, feature = "rand"))]
fn random_32_bytes<R: Rng>(rng: &mut R) -> [u8; 32] {
    let mut ret = [0u8; 32];
    rng.fill_bytes(&mut ret);
    ret
}

impl SecretKey {
    /// Creates a new random secret key. Requires compilation with the "rand" feature.
    #[inline]
    #[cfg(any(test, feature = "rand"))]
    pub fn new<R: Rng, C>(secp: &Secp256k1<C>, rng: &mut R) -> SecretKey {
        let mut data = random_32_bytes(rng);
        unsafe {
            while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
                data = random_32_bytes(rng);
            }
        }
        SecretKey(data)
    }

    /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
    #[inline]
    pub fn from_slice<C>(secp: &Secp256k1<C>, data: &[u8])
                        -> Result<SecretKey, Error> {
        match data.len() {
            constants::SECRET_KEY_SIZE => {
                let mut ret = [0; constants::SECRET_KEY_SIZE];
                unsafe {
                    if ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
                        return Err(InvalidSecretKey);
                    }
                }
                ret[..].copy_from_slice(data);
                Ok(SecretKey(ret))
            }
            _ => Err(InvalidSecretKey)
        }
    }

    #[inline]
    /// Adds one secret key to another, modulo the curve order
    pub fn add_assign<C>(&mut self, secp: &Secp256k1<C>, other: &SecretKey)
                     -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
                Err(InvalidSecretKey)
            } else {
                Ok(())
            }
        }
    }

    #[inline]
    /// Multiplies one secret key by another, modulo the curve order
    pub fn mul_assign<C>(&mut self, secp: &Secp256k1<C>, other: &SecretKey)
                     -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ec_privkey_tweak_mul(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
                Err(InvalidSecretKey)
            } else {
                Ok(())
            }
        }
    }
}

#[cfg(feature = "serde")]
impl ::serde::Serialize for SecretKey {
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        s.serialize_bytes(&self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for SecretKey {
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<SecretKey, D::Error> {
        use ::serde::de::Error;

        // serde can actually deserialize a 32-byte array directly rather than deserializing
        // a byte slice and copying, but it has special code for byte-slices and no special
        // code for byte-arrays, meaning this is actually simpler and more efficient
        let mut arr = [0; 32];
        let sl: &[u8] = ::serde::Deserialize::deserialize(d)?;
        if sl.len() != constants::SECRET_KEY_SIZE {
            return Err(D::Error::invalid_length(sl.len(), &"32"));
        }
        arr.copy_from_slice(sl);
        Ok(SecretKey(arr))
    }
}

impl PublicKey {
    /// Obtains a raw pointer suitable for use with FFI functions
    #[inline]
    pub fn as_ptr(&self) -> *const ffi::PublicKey {
        &self.0 as *const _
    }

    /// Creates a new public key from a secret key.
    #[inline]
    pub fn from_secret_key<C: Signing>(secp: &Secp256k1<C>,
                           sk: &SecretKey)
                           -> PublicKey {
        let mut pk = unsafe { ffi::PublicKey::blank() };
        unsafe {
            // We can assume the return value because it's not possible to construct
            // an invalid `SecretKey` without transmute trickery or something
            let res = ffi::secp256k1_ec_pubkey_create(secp.ctx, &mut pk, sk.as_ptr());
            debug_assert_eq!(res, 1);
        }
        PublicKey(pk)
    }

    /// Creates a public key directly from a slice
    #[inline]
    pub fn from_slice<C>(secp: &Secp256k1<C>, data: &[u8])
                      -> Result<PublicKey, Error> {

        let mut pk = unsafe { ffi::PublicKey::blank() };
        unsafe {
            if ffi::secp256k1_ec_pubkey_parse(secp.ctx, &mut pk, data.as_ptr(),
                                              data.len() as ::libc::size_t) == 1 {
                Ok(PublicKey(pk))
            } else {
                Err(InvalidPublicKey)
            }
        }
    }

    #[inline]
    /// Serialize the key as a byte-encoded pair of values. In compressed form
    /// the y-coordinate is represented by only a single bit, as x determines
    /// it up to one bit.
    pub fn serialize(&self) -> [u8; constants::PUBLIC_KEY_SIZE] {
        let secp = Secp256k1::without_caps();
        let mut ret = [0; constants::PUBLIC_KEY_SIZE];

        unsafe {
            let mut ret_len = constants::PUBLIC_KEY_SIZE as ::libc::size_t;
            let err = ffi::secp256k1_ec_pubkey_serialize(
                secp.ctx,
                ret.as_mut_ptr(),
                &mut ret_len,
                self.as_ptr(),
                ffi::SECP256K1_SER_COMPRESSED,
            );
            debug_assert_eq!(err, 1);
            debug_assert_eq!(ret_len, ret.len());
        }
        ret
    }

    /// Serialize the key as a byte-encoded pair of values, in uncompressed form
    pub fn serialize_uncompressed(&self) -> [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] {
        let secp = Secp256k1::without_caps();
        let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];

        unsafe {
            let mut ret_len = constants::UNCOMPRESSED_PUBLIC_KEY_SIZE as ::libc::size_t;
            let err = ffi::secp256k1_ec_pubkey_serialize(
                secp.ctx,
                ret.as_mut_ptr(),
                &mut ret_len,
                self.as_ptr(),
                ffi::SECP256K1_SER_UNCOMPRESSED,
            );
            debug_assert_eq!(err, 1);
            debug_assert_eq!(ret_len, ret.len());
        }
        ret
    }

    #[inline]
    /// Adds the pk corresponding to `other` to the pk `self` in place
    pub fn add_exp_assign<C: Verification>(&mut self, secp: &Secp256k1<C>, other: &SecretKey)
                         -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, &mut self.0 as *mut _,
                                                  other.as_ptr()) == 1 {
                Ok(())
            } else {
                Err(InvalidSecretKey)
            }
        }
    }

    #[inline]
    /// Muliplies the pk `self` in place by the scalar `other`
    pub fn mul_assign<C: Verification>(&mut self, secp: &Secp256k1<C>, other: &SecretKey)
                         -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ec_pubkey_tweak_mul(secp.ctx, &mut self.0 as *mut _,
                                                  other.as_ptr()) == 1 {
                Ok(())
            } else {
                Err(InvalidSecretKey)
            }
        }
    }

    /// Adds a second key to this one, returning the sum. Returns an error if
    /// the result would be the point at infinity, i.e. we are adding this point
    /// to its own negation
    pub fn combine<C>(&self, secp: &Secp256k1<C>, other: &PublicKey) -> Result<PublicKey, Error> {
        unsafe {
            let mut ret = mem::uninitialized();
            let ptrs = [self.as_ptr(), other.as_ptr()];
            if ffi::secp256k1_ec_pubkey_combine(secp.ctx, &mut ret, ptrs.as_ptr(), 2) == 1 {
                Ok(PublicKey(ret))
            } else {
                Err(InvalidPublicKey)
            }
        }
    }
}

/// Creates a new public key from a FFI public key
impl From<ffi::PublicKey> for PublicKey {
    #[inline]
    fn from(pk: ffi::PublicKey) -> PublicKey {
        PublicKey(pk)
    }
}

#[cfg(feature = "serde")]
impl ::serde::Serialize for PublicKey {
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        s.serialize_bytes(&self.serialize())
    }
}

#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PublicKey {
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
        use ::serde::de::Error;

        let secp = Secp256k1::without_caps();
        let sl: &[u8] = ::serde::Deserialize::deserialize(d)?;
        PublicKey::from_slice(&secp, sl).map_err(D::Error::custom)
    }
}

#[cfg(test)]
mod test {
    use Secp256k1;
    use from_hex;
    use super::super::Error::{InvalidPublicKey, InvalidSecretKey};
    use super::{PublicKey, SecretKey};
    use super::super::constants;

    use rand::{Rng, thread_rng};
    use std::iter;
    use std::str::FromStr;

    macro_rules! hex {
        ($hex:expr) => ({
            let mut result = vec![0; $hex.len() / 2];
            from_hex($hex, &mut result).expect("valid hex string");
            result
        });
    }

    #[test]
    fn skey_from_slice() {
        let s = Secp256k1::new();
        let sk = SecretKey::from_slice(&s, &[1; 31]);
        assert_eq!(sk, Err(InvalidSecretKey));

        let sk = SecretKey::from_slice(&s, &[1; 32]);
        assert!(sk.is_ok());
    }

    #[test]
    fn pubkey_from_slice() {
        let s = Secp256k1::new();
        assert_eq!(PublicKey::from_slice(&s, &[]), Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[1, 2, 3]), Err(InvalidPublicKey));

        let uncompressed = PublicKey::from_slice(&s, &[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
        assert!(uncompressed.is_ok());

        let compressed = PublicKey::from_slice(&s, &[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
        assert!(compressed.is_ok());
    }

    #[test]
    fn keypair_slice_round_trip() {
        let s = Secp256k1::new();

        let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
        assert_eq!(SecretKey::from_slice(&s, &sk1[..]), Ok(sk1));
        assert_eq!(PublicKey::from_slice(&s, &pk1.serialize()[..]), Ok(pk1));
        assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_uncompressed()[..]), Ok(pk1));
    }

    #[test]
    fn invalid_secret_key() {
        let s = Secp256k1::new();
        // Zero
        assert_eq!(SecretKey::from_slice(&s, &[0; 32]), Err(InvalidSecretKey));
        // -1
        assert_eq!(SecretKey::from_slice(&s, &[0xff; 32]), Err(InvalidSecretKey));
        // Top of range
        assert!(SecretKey::from_slice(&s,
                                      &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                                        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
                                        0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
                                        0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
        // One past top of range
        assert!(SecretKey::from_slice(&s,
                                      &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                                        0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
                                        0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
                                        0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
    }

    #[test]
    fn test_out_of_range() {

        struct BadRng(u8);
        impl Rng for BadRng {
            fn next_u32(&mut self) -> u32 { unimplemented!() }
            // This will set a secret key to a little over the
            // group order, then decrement with repeated calls
            // until it returns a valid key
            fn fill_bytes(&mut self, data: &mut [u8]) {
                let group_order: [u8; 32] = [
                    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
                    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
                    0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
                    0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41];
                assert_eq!(data.len(), 32);
                data.copy_from_slice(&group_order[..]);
                data[31] = self.0;
                self.0 -= 1;
            }
        }

        let s = Secp256k1::new();
        s.generate_keypair(&mut BadRng(0xff));
    }

    #[test]
    fn test_pubkey_from_bad_slice() {
        let s = Secp256k1::new();
        // Bad sizes
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::PUBLIC_KEY_SIZE - 1]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::PUBLIC_KEY_SIZE + 1]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]),
                   Err(InvalidPublicKey));

        // Bad parse
        assert_eq!(PublicKey::from_slice(&s, &[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]),
                   Err(InvalidPublicKey));
        assert_eq!(PublicKey::from_slice(&s, &[0x55; constants::PUBLIC_KEY_SIZE]),
                   Err(InvalidPublicKey));
    }

    #[test]
    fn test_debug_output() {
        struct DumbRng(u32);
        impl Rng for DumbRng {
            fn next_u32(&mut self) -> u32 {
                self.0 = self.0.wrapping_add(1);
                self.0
            }
        }

        let s = Secp256k1::new();
        let (sk, _) = s.generate_keypair(&mut DumbRng(0));

        assert_eq!(&format!("{:?}", sk),
                   "SecretKey(0200000001000000040000000300000006000000050000000800000007000000)");
    }

    #[test]
    fn test_display_output() {
        static SK_BYTES: [u8; 32] = [
            0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
            0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
            0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00,
            0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63,
        ];

        let s = Secp256k1::signing_only();
        let sk = SecretKey::from_slice(&s, &SK_BYTES).expect("sk");
        let pk = PublicKey::from_secret_key(&s, &sk);

        assert_eq!(
            sk.to_string(),
            "01010101010101010001020304050607ffff0000ffff00006363636363636363"
        );
        assert_eq!(
            SecretKey::from_str("01010101010101010001020304050607ffff0000ffff00006363636363636363").unwrap(),
            sk
        );
        assert_eq!(
            pk.to_string(),
            "0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166"
        );
        assert_eq!(
            PublicKey::from_str("0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166").unwrap(),
            pk
        );
        assert_eq!(
            PublicKey::from_str("04\
                18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166\
                84B84DB303A340CD7D6823EE88174747D12A67D2F8F2F9BA40846EE5EE7A44F6"
            ).unwrap(),
            pk
        );

        assert!(SecretKey::from_str("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").is_err());
        assert!(SecretKey::from_str("01010101010101010001020304050607ffff0000ffff0000636363636363636363").is_err());
        assert!(SecretKey::from_str("01010101010101010001020304050607ffff0000ffff0000636363636363636").is_err());
        assert!(SecretKey::from_str("01010101010101010001020304050607ffff0000ffff000063636363636363").is_err());
        assert!(SecretKey::from_str("01010101010101010001020304050607ffff0000ffff000063636363636363xx").is_err());
        assert!(PublicKey::from_str("0300000000000000000000000000000000000000000000000000000000000000000").is_err());
        assert!(PublicKey::from_str("0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd16601").is_err());
        assert!(PublicKey::from_str("0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd16").is_err());
        assert!(PublicKey::from_str("0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd1").is_err());
        assert!(PublicKey::from_str("xx0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd1").is_err());

        let long_str: String = iter::repeat('a').take(1024 * 1024).collect();
        assert!(SecretKey::from_str(&long_str).is_err());
        assert!(PublicKey::from_str(&long_str).is_err());
    }

    #[test]
    fn test_pubkey_serialize() {
        struct DumbRng(u32);
        impl Rng for DumbRng {
            fn next_u32(&mut self) -> u32 {
                self.0 = self.0.wrapping_add(1);
                self.0
            }
        }

        let s = Secp256k1::new();
        let (_, pk1) = s.generate_keypair(&mut DumbRng(0));
        assert_eq!(&pk1.serialize_uncompressed()[..],
                   &[4, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236, 1, 189, 143, 242, 227, 16, 87, 247, 183, 162, 68, 237, 140, 92, 205, 151, 129, 166, 58, 111, 96, 123, 64, 180, 147, 51, 12, 209, 89, 236, 213, 206][..]);
        assert_eq!(&pk1.serialize()[..],
                   &[2, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236][..]);
    }

    #[test]
    fn test_addition() {
        let s = Secp256k1::new();

        let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng());
        let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng());

        assert_eq!(PublicKey::from_secret_key(&s, &sk1), pk1);
        assert!(sk1.add_assign(&s, &sk2).is_ok());
        assert!(pk1.add_exp_assign(&s, &sk2).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk1), pk1);

        assert_eq!(PublicKey::from_secret_key(&s, &sk2), pk2);
        assert!(sk2.add_assign(&s, &sk1).is_ok());
        assert!(pk2.add_exp_assign(&s, &sk1).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk2), pk2);
    }

    #[test]
    fn test_multiplication() {
        let s = Secp256k1::new();

        let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng());
        let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng());

        assert_eq!(PublicKey::from_secret_key(&s, &sk1), pk1);
        assert!(sk1.mul_assign(&s, &sk2).is_ok());
        assert!(pk1.mul_assign(&s, &sk2).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk1), pk1);

        assert_eq!(PublicKey::from_secret_key(&s, &sk2), pk2);
        assert!(sk2.mul_assign(&s, &sk1).is_ok());
        assert!(pk2.mul_assign(&s, &sk1).is_ok());
        assert_eq!(PublicKey::from_secret_key(&s, &sk2), pk2);
    }

    #[test]
    fn pubkey_hash() {
        use std::collections::hash_map::DefaultHasher;
        use std::hash::{Hash, Hasher};
        use std::collections::HashSet;

        fn hash<T: Hash>(t: &T) -> u64 {
            let mut s = DefaultHasher::new();
            t.hash(&mut s);
            s.finish()
        }

        let s = Secp256k1::new();
        let mut set = HashSet::new();
        const COUNT : usize = 1024;
        let count = (0..COUNT).map(|_| {
            let (_, pk) = s.generate_keypair(&mut thread_rng());
            let hash = hash(&pk);
            assert!(!set.contains(&hash));
            set.insert(hash);
        }).count();
        assert_eq!(count, COUNT);
    }

    #[test]
    fn pubkey_combine() {
        let s = Secp256k1::without_caps();
        let compressed1 = PublicKey::from_slice(
            &s,
            &hex!("0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"),
        ).unwrap();
        let compressed2 = PublicKey::from_slice(
            &s,
            &hex!("02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"),
        ).unwrap();
        let exp_sum = PublicKey::from_slice(
            &s,
            &hex!("0384526253c27c7aef56c7b71a5cd25bebb66dddda437826defc5b2568bde81f07"),
        ).unwrap();

        let sum1 = compressed1.combine(&s, &compressed2);
        assert!(sum1.is_ok());
        let sum2 = compressed2.combine(&s, &compressed1);
        assert!(sum2.is_ok());
        assert_eq!(sum1, sum2);
        assert_eq!(sum1.unwrap(), exp_sum);
    }

    #[test]
    fn pubkey_equal() {
        let s = Secp256k1::new();
        let pk1 = PublicKey::from_slice(
            &s,
            &hex!("0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"),
        ).unwrap();
        let pk2 = pk1.clone();
        let pk3 = PublicKey::from_slice(
            &s,
            &hex!("02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"),
        ).unwrap();

        assert!(pk1 == pk2);
        assert!(pk1 <= pk2);
        assert!(pk2 <= pk1);
        assert!(!(pk2 < pk1));
        assert!(!(pk1 < pk2));

        assert!(pk3 < pk1);
        assert!(pk1 > pk3);
        assert!(pk3 <= pk1);
        assert!(pk1 >= pk3);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_signature_serde() {
        use serde_test::{Token, assert_tokens};
        static SK_BYTES: [u8; 32] = [
            1, 1, 1, 1, 1, 1, 1, 1,
            0, 1, 2, 3, 4, 5, 6, 7,
            0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0,
            99, 99, 99, 99, 99, 99, 99, 99
        ];
        static PK_BYTES: [u8; 33] = [
            0x02,
            0x18, 0x84, 0x57, 0x81, 0xf6, 0x31, 0xc4, 0x8f,
            0x1c, 0x97, 0x09, 0xe2, 0x30, 0x92, 0x06, 0x7d,
            0x06, 0x83, 0x7f, 0x30, 0xaa, 0x0c, 0xd0, 0x54,
            0x4a, 0xc8, 0x87, 0xfe, 0x91, 0xdd, 0xd1, 0x66,
        ];

        let s = Secp256k1::new();

        let sk = SecretKey::from_slice(&s, &SK_BYTES).unwrap();
        let pk = PublicKey::from_secret_key(&s, &sk);

        assert_tokens(&sk, &[Token::BorrowedBytes(&SK_BYTES[..])]);
        assert_tokens(&pk, &[Token::BorrowedBytes(&PK_BYTES[..])]);
    }
}