1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#[cfg(test)]
mod util_test;

use std::collections::HashMap;
use std::fmt;

use super::error::{Error, Result};

pub const ATTRIBUTE_KEY: &str = "a=";

/// ConnectionRole indicates which of the end points should initiate the connection establishment
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
pub enum ConnectionRole {
    #[default]
    Unspecified,

    /// ConnectionRoleActive indicates the endpoint will initiate an outgoing connection.
    Active,

    /// ConnectionRolePassive indicates the endpoint will accept an incoming connection.
    Passive,

    /// ConnectionRoleActpass indicates the endpoint is willing to accept an incoming connection or to initiate an outgoing connection.
    Actpass,

    /// ConnectionRoleHoldconn indicates the endpoint does not want the connection to be established for the time being.
    Holdconn,
}

const CONNECTION_ROLE_ACTIVE_STR: &str = "active";
const CONNECTION_ROLE_PASSIVE_STR: &str = "passive";
const CONNECTION_ROLE_ACTPASS_STR: &str = "actpass";
const CONNECTION_ROLE_HOLDCONN_STR: &str = "holdconn";

impl fmt::Display for ConnectionRole {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = match self {
            ConnectionRole::Active => CONNECTION_ROLE_ACTIVE_STR,
            ConnectionRole::Passive => CONNECTION_ROLE_PASSIVE_STR,
            ConnectionRole::Actpass => CONNECTION_ROLE_ACTPASS_STR,
            ConnectionRole::Holdconn => CONNECTION_ROLE_HOLDCONN_STR,
            _ => "Unspecified",
        };
        write!(f, "{s}")
    }
}

impl From<u8> for ConnectionRole {
    fn from(v: u8) -> Self {
        match v {
            1 => ConnectionRole::Active,
            2 => ConnectionRole::Passive,
            3 => ConnectionRole::Actpass,
            4 => ConnectionRole::Holdconn,
            _ => ConnectionRole::Unspecified,
        }
    }
}

impl From<&str> for ConnectionRole {
    fn from(raw: &str) -> Self {
        match raw {
            CONNECTION_ROLE_ACTIVE_STR => ConnectionRole::Active,
            CONNECTION_ROLE_PASSIVE_STR => ConnectionRole::Passive,
            CONNECTION_ROLE_ACTPASS_STR => ConnectionRole::Actpass,
            CONNECTION_ROLE_HOLDCONN_STR => ConnectionRole::Holdconn,
            _ => ConnectionRole::Unspecified,
        }
    }
}

/// https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-26#section-5.2.1
/// Session ID is recommended to be constructed by generating a 64-bit
/// quantity with the highest bit set to zero and the remaining 63-bits
/// being cryptographically random.
pub(crate) fn new_session_id() -> u64 {
    let c = u64::MAX ^ (1u64 << 63);
    rand::random::<u64>() & c
}

// Codec represents a codec
#[derive(Debug, Clone, Default, PartialEq, Eq)]
pub struct Codec {
    pub payload_type: u8,
    pub name: String,
    pub clock_rate: u32,
    pub encoding_parameters: String,
    pub fmtp: String,
    pub rtcp_feedback: Vec<String>,
}

impl fmt::Display for Codec {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{} {}/{}/{} ({}) [{}]",
            self.payload_type,
            self.name,
            self.clock_rate,
            self.encoding_parameters,
            self.fmtp,
            self.rtcp_feedback.join(", "),
        )
    }
}

pub(crate) fn parse_rtpmap(rtpmap: &str) -> Result<Codec> {
    // a=rtpmap:<payload type> <encoding name>/<clock rate>[/<encoding parameters>]
    let split: Vec<&str> = rtpmap.split_whitespace().collect();
    if split.len() != 2 {
        return Err(Error::MissingWhitespace);
    }

    let pt_split: Vec<&str> = split[0].split(':').collect();
    if pt_split.len() != 2 {
        return Err(Error::MissingColon);
    }
    let payload_type = pt_split[1].parse::<u8>()?;

    let split: Vec<&str> = split[1].split('/').collect();
    let name = split[0].to_string();
    let parts = split.len();
    let clock_rate = if parts > 1 {
        split[1].parse::<u32>()?
    } else {
        0
    };
    let encoding_parameters = if parts > 2 {
        split[2].to_string()
    } else {
        "".to_string()
    };

    Ok(Codec {
        payload_type,
        name,
        clock_rate,
        encoding_parameters,
        ..Default::default()
    })
}

pub(crate) fn parse_fmtp(fmtp: &str) -> Result<Codec> {
    // a=fmtp:<format> <format specific parameters>
    let split: Vec<&str> = fmtp.split_whitespace().collect();
    if split.len() != 2 {
        return Err(Error::MissingWhitespace);
    }

    let fmtp = split[1].to_string();

    let split: Vec<&str> = split[0].split(':').collect();
    if split.len() != 2 {
        return Err(Error::MissingColon);
    }
    let payload_type = split[1].parse::<u8>()?;

    Ok(Codec {
        payload_type,
        fmtp,
        ..Default::default()
    })
}

pub(crate) fn parse_rtcp_fb(rtcp_fb: &str) -> Result<Codec> {
    // a=ftcp-fb:<payload type> <RTCP feedback type> [<RTCP feedback parameter>]
    let split: Vec<&str> = rtcp_fb.splitn(2, ' ').collect();
    if split.len() != 2 {
        return Err(Error::MissingWhitespace);
    }

    let pt_split: Vec<&str> = split[0].split(':').collect();
    if pt_split.len() != 2 {
        return Err(Error::MissingColon);
    }

    Ok(Codec {
        payload_type: pt_split[1].parse::<u8>()?,
        rtcp_feedback: vec![split[1].to_string()],
        ..Default::default()
    })
}

pub(crate) fn merge_codecs(mut codec: Codec, codecs: &mut HashMap<u8, Codec>) {
    if let Some(saved_codec) = codecs.get_mut(&codec.payload_type) {
        if saved_codec.payload_type == 0 {
            saved_codec.payload_type = codec.payload_type
        }
        if saved_codec.name.is_empty() {
            saved_codec.name = codec.name
        }
        if saved_codec.clock_rate == 0 {
            saved_codec.clock_rate = codec.clock_rate
        }
        if saved_codec.encoding_parameters.is_empty() {
            saved_codec.encoding_parameters = codec.encoding_parameters
        }
        if saved_codec.fmtp.is_empty() {
            saved_codec.fmtp = codec.fmtp
        }
        saved_codec.rtcp_feedback.append(&mut codec.rtcp_feedback);
    } else {
        codecs.insert(codec.payload_type, codec);
    }
}

fn equivalent_fmtp(want: &str, got: &str) -> bool {
    let mut want_split: Vec<&str> = want.split(';').collect();
    let mut got_split: Vec<&str> = got.split(';').collect();

    if want_split.len() != got_split.len() {
        return false;
    }

    want_split.sort_unstable();
    got_split.sort_unstable();

    for (i, &want_part) in want_split.iter().enumerate() {
        let want_part = want_part.trim();
        let got_part = got_split[i].trim();
        if got_part != want_part {
            return false;
        }
    }

    true
}

pub(crate) fn codecs_match(wanted: &Codec, got: &Codec) -> bool {
    if !wanted.name.is_empty() && wanted.name.to_lowercase() != got.name.to_lowercase() {
        return false;
    }
    if wanted.clock_rate != 0 && wanted.clock_rate != got.clock_rate {
        return false;
    }
    if !wanted.encoding_parameters.is_empty()
        && wanted.encoding_parameters != got.encoding_parameters
    {
        return false;
    }
    if !wanted.fmtp.is_empty() && !equivalent_fmtp(&wanted.fmtp, &got.fmtp) {
        return false;
    }

    true
}