1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//! # Sdl2Timing
//!
//! ## Purpose   
//!
//! This crate supports on getting the timing right for sdl2 applications.
//! Timing is important to avoid lag (too slow rate) or high cpu load
//! (too high rate). sdl2 offers the possibility to enable vsync synchronization,
//! which is best solution for responsiveness at lowes cpu load.
//! 
//! Example to enable vsync with CanvasBuilder:
//!
//! ```
//!    let mut canvas = sdl2::render::CanvasBuilder::new(window)
//!        .accelerated()
//!        .present_vsync()
//!        .build()?;
//! ```
//!
//! So why need this crate ? 
//! 
//! At least on the macbook air without external monitor, the vsync
//! just is not in use. So depending on vsync for appropriate rate
//! will let the main loop spin at max. rate and creates too high load.
//! With external monitor attached, vsync works. Consequently a solution
//! is needed to either rely on vsync or use delays as fallback.
//!
//! Querying the window.displayMode() for the current framerate,
//! is not reliable. At least on one linux machine 60Hz has been reported,
//! while operating a 4K display at 41Hz.
//!
//! Even relying on vsync is tricky. First canvas.clear() _and_ canvas.present()
//! can wait for vsync to occur. Second for moving element calculation,
//! it is good to know the time till the next frame for proper display position.
//!
//! ## Solution
//!
//! This crate provides a single struct Sdl2Timing, which offers:
//!
//! * Call canvas present and canvas clear
//! * Timing measurement inside the main loop
//! * Output of timing data for development
//! * Info about real framerate,...
//! * Remaining time to next frame

use log::*;
use std::thread::sleep;
use std::time::{Duration,Instant};
use std::collections::HashMap;

use sdl2::render::Canvas;
use sdl2::video::Window;

#[allow(dead_code)]
pub struct Sdl2Timing<'a> {
    last_us: u64,
    stamp: Option<Instant>,
    sdl2_us_per_frame: u32,
    clear_present_avg_us: u32,
    opt_us_per_frame: Option<u32>,
    opt_base_time: Option<Instant>,
    need_initalize: bool,
    has_vsync: bool,
    lost_frames_cnt: usize,
    measures: HashMap<&'a str,(u64,u64,u64,u64)>, // min,sum,max,cnt
    display_mode: sdl2::video::DisplayMode,
    display_name: String,
}
impl<'a> Sdl2Timing<'a> {
    pub fn new_for(
                vs: &'a sdl2::VideoSubsystem,
                win: &Window) -> Result<Sdl2Timing<'a>, String> {
        let display_index = win.display_index()?;
        for i in 0..vs.num_video_displays()? {
            let display_mode = vs.current_display_mode(i)?;
            let display_name = vs.display_name(i)?;
            let selected = if i == display_index {
                " <= displays my window"
            }
            else {
                ""
            };
            info!("Display {} named '{}' uses mode {:?} {}",
                   i,
                   display_name,
                   display_mode,
                   selected);
        }
        let display_mode = vs.current_display_mode(display_index)?;
        let display_name = vs.display_name(display_index)?;
        let sdl2_us_per_frame = 1_000_000 / display_mode.refresh_rate as u32;
        assert!(sdl2_us_per_frame > 0);
        Ok(Sdl2Timing {
            last_us: 0,
            stamp: None,
            sdl2_us_per_frame,
            opt_us_per_frame: None,
            clear_present_avg_us: 0,
            opt_base_time: None,
            need_initalize: true,
            has_vsync: false,
            lost_frames_cnt: 0,
            display_mode,
            display_name,
            measures: HashMap::new(),
        })
    }
    pub fn get_us_per_frame(&self) -> u32 {
        if self.has_vsync {
            if let Some(us_per_frame) = self.opt_us_per_frame {
                return us_per_frame;
            }
        }
        self.sdl2_us_per_frame
    }
    fn measure(&mut self, canvas: &mut Canvas<Window>) {
        let start_measure = Instant::now();
        let mut round_us_vec = vec![];
        let mut opt_last_round_us = None;
        let measurement_time_us = 300_000;
        loop {
            let elapsed = start_measure.elapsed();
            let elapsed_us = elapsed.subsec_micros() as u64
                            + 1_000_000*elapsed.as_secs();
            if elapsed_us > measurement_time_us {
                break;
            }
            if let Some(last_round_us) = opt_last_round_us {
                let round_us = elapsed_us - last_round_us;
                if round_us > 1_000_000/170 { // Cap at 170 Hz
                    round_us_vec.push(round_us);
                }
            }
            opt_last_round_us = Some(elapsed_us);
            sleep(Duration::from_micros(200));
            self.sample("Sdl2Timing: sleep in measurement");
            canvas.clear();
            let mut avg_us = self.sample("Sdl2Timing: canvas clear").1;
            canvas.present();
            avg_us += self.sample("Sdl2Timing: canvas present").1;
            self.clear_present_avg_us = avg_us;
        }
        debug!("Measured round times in us: {:?}",round_us_vec);
        if round_us_vec.len() > 2 {
            round_us_vec.sort();
            let median = round_us_vec[round_us_vec.len()/2];
            let upper = median * 21/20;
            let lower = median * 19/20;
            debug!("Median value: {}",median);
            let filtered_round_us = round_us_vec.into_iter()
                                                .filter(|&dt| (dt < upper) && (dt > lower))
                                                .collect::<Vec<_>>();
            debug!("Filtered times +/-5%: {:?}",filtered_round_us);
            let sum_round_us: u64 = filtered_round_us.iter().cloned().sum::<u64>();
            let us_per_frame = (sum_round_us / filtered_round_us.len() as u64) as u32;
            debug!("Calculated frame rate= {} us/frame",us_per_frame);
            if sum_round_us > measurement_time_us/3 {
                if us_per_frame > 1_000_000/170 && us_per_frame < 1_000_000/10 {
                    self.has_vsync = true;
                    self.opt_us_per_frame = Some(us_per_frame);
                }
                else {
                    debug!("...outside acceptance window 10..170Hz");
                }
            }
            else {
                debug!("...not enough significant loop times");
            }
        }
    }
    /// It should be called at beginning of the main loop with the display
    /// canvas as argument and the color, which should be used to clear the canvas.
    ///
    pub fn canvas_present_then_clear(&mut self, 
                                     canvas: &mut Canvas<Window>,
                                     color: sdl2::pixels::Color) {
        let mut avg_us = 0;
        if self.need_initalize {
            self.last_us = 0;
            self.stamp = Some(Instant::now());
            self.need_initalize = false;

            // Due to double buffering ensure both buffers are filled
            // with the initial color. Otherwise swapping during
            // measurement would lead to flicker.
            canvas.set_draw_color(color);
            canvas.clear();
            canvas.present();
            canvas.set_draw_color(color);
            canvas.clear();
            self.measure(canvas);
        }
        else {
            if !self.has_vsync {
                let rem_us = self.us_till_next_frame();
                let sleep_duration = Duration::new(0, rem_us as u32 * 1_000);
                std::thread::sleep(sleep_duration);
                self.sample("Sdl2Timing: sleep");
                if let Some(base_time) = self.opt_base_time {
                    let us_per_frame = self.get_us_per_frame();
                    self.opt_base_time = Some(base_time + Duration::new(0, us_per_frame * 1_000));
                }
            }
            else {
                self.opt_base_time = None;
            }
            self.sample("Sdl2Timing: before present and clear");
            canvas.present();
            avg_us += self.sample("Sdl2Timing: canvas present").1;
        }
        // TODO: Optional
        canvas.set_draw_color(color);
        canvas.clear();
        if self.opt_base_time.is_none() {
            self.opt_base_time = Some(Instant::now());
        }
        avg_us += self.sample("Sdl2Timing: canvas clear").1;
        self.clear_present_avg_us = avg_us;
    }
    pub fn sample(&mut self, name: &'a str) -> (u32,u32) { // actual, average
        if !self.measures.contains_key(&name) {
            self.measures.insert(&name, (u64::max_value(),0,0,0));
        }
        let mut m = self.measures.get_mut(&name).unwrap();
        let elapsed = self.stamp.as_ref().unwrap().elapsed();
        let elapsed_us = elapsed.subsec_micros() as u64
                        + 1_000_000 * elapsed.as_secs();
        let dt_us = elapsed_us - self.last_us;
        self.last_us = elapsed_us;

        m.0 = m.0.min(dt_us);
        m.1 += dt_us;
        m.2 = m.2.max(dt_us);
        m.3 += 1;
        (dt_us as u32, (m.1/m.3) as u32)
    }
    pub fn clear(&mut self) {
        self.measures.clear();
    }
    pub fn us_till_next_frame(&mut self) -> u32 {
        if let Some(base_time) = self.opt_base_time.as_ref() {
            let elapsed = base_time.elapsed();
            let elapsed_us = elapsed.subsec_micros() as u64 
                                + elapsed.as_secs() * 1_000_000;
            let us_per_frame = self.get_us_per_frame() as u64;
            assert!(us_per_frame > 0);
            if elapsed_us > us_per_frame {
                self.lost_frames_cnt += 1;
                warn!("SYNC MISSED: {}, this time by {} us",self.lost_frames_cnt, elapsed_us - us_per_frame);
                0
            }
            else {
                let rem_us = (us_per_frame - elapsed_us) as u32;
                rem_us.max(1_000)-1_000 //TODO: represents time for clear+present
            }
        } else {
            error!("This path should not be taken");
            self.opt_base_time = Some(Instant::now());
            0
        }
    }
    pub fn output(&self) {
        if self.has_vsync {
            println!("VSYNC is in use");
            if let Some(us_per_frame) = self.opt_us_per_frame {
                println!("measured frame rate = {} us/frame",us_per_frame);
                println!("measured frame frequency = {:.2} Hz",1_000_000.0 / us_per_frame as f64);
            }
            else {
                println!("...but no frame rate !?");
            }
        }
        else {
            println!("VSYNC not detected");
        }
        if self.lost_frames_cnt > 0 {
            println!("Lost frame happened: {} times", self.lost_frames_cnt);
        }
        for (name, (us_min,us_sum,us_max,cnt)) in self.measures.iter() {
            println!(
                  "cnt={:6} min={:6.6}us avg={:6.6}us max={:6.6}us {}",
                  cnt,us_min,us_sum/ *cnt as u64,us_max,name);
        }
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn it_works() {
        assert_eq!(2 + 2, 4);
    }
}