1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use std::io::{Result, Read, Write};
use ctx::{FromCtx, IntoCtx, SizeWith};

/// An extension trait to `std::io::Read` streams; this only deserializes simple types, like `u8`, `i32`, `f32`, `usize`, etc.
///
/// If you implement [`FromCtx`](trait.FromCtx.html) and [`SizeWith`](ctx/trait.SizeWith.html) for your type, you can then `ioread::<YourType>()` on a `Read`.  Note: [`FromCtx`](trait.FromCtx.html) is only meant for very simple types, and should _never_ fail.
///
/// **NB** You should probably add `repr(packed)` or `repr(C)` and be very careful how you implement [`SizeWith`](ctx/trait.SizeWith.html), otherwise you
/// will get IO errors failing to fill entire buffer (the size you specified in `SizeWith`), or out of bound errors (depending on your impl) in `from_ctx`
///
/// # Example
/// ```rust
/// use std::io::Cursor;
/// use scroll::{self, ctx, LE, Pread, IOread};
///
/// #[repr(packed)]
/// struct Foo {
///     foo: i64,
///     bar: u32,
/// }
///
/// impl ctx::FromCtx<scroll::Endian> for Foo {
///     fn from_ctx(bytes: &[u8], ctx: scroll::Endian) -> Self {
///         Foo { foo: bytes.pread_with::<i64>(0, ctx).unwrap(), bar: bytes.pread_with::<u32>(8, ctx).unwrap() }
///     }
/// }
///
/// impl ctx::SizeWith<scroll::Endian> for Foo {
///     type Units = usize;
///     // our parsing context doesn't influence our size
///     fn size_with(_: &scroll::Endian) -> Self::Units {
///         ::std::mem::size_of::<Foo>()
///     }
/// }
///
/// let bytes_ = [0x0b,0x0b,0x00,0x00,0x00,0x00,0x00,0x00, 0xef,0xbe,0x00,0x00,];
/// let mut bytes = Cursor::new(bytes_);
/// let foo = bytes.ioread_with::<i64>(LE).unwrap();
/// let bar = bytes.ioread_with::<u32>(LE).unwrap();
/// assert_eq!(foo, 0xb0b);
/// assert_eq!(bar, 0xbeef);
/// let error = bytes.ioread_with::<f64>(LE);
/// assert!(error.is_err());
/// let mut bytes = Cursor::new(bytes_);
/// let foo_ = bytes.ioread_with::<Foo>(LE).unwrap();
/// assert_eq!(foo_.foo, foo);
/// assert_eq!(foo_.bar, bar);
/// ```
///
pub trait IOread<Ctx: Copy> : Read
{
    /// Reads the type `N` from `Self`, with a default parsing context.
    /// For the primitive numeric types, this will be at the host machine's endianness.
    ///
    /// # Example
    /// ```rust
    /// use scroll::IOread;
    /// use std::io::Cursor;
    /// let bytes = [0xef, 0xbe];
    /// let mut bytes = Cursor::new(&bytes[..]);
    /// let beef = bytes.ioread::<u16>().unwrap();
    ///
    /// #[cfg(target_endian = "little")]
    /// assert_eq!(0xbeef, beef);
    /// #[cfg(target_endian = "big")]
    /// assert_eq!(0xefbe, beef);
    /// ```
    #[inline]
    fn ioread<N: FromCtx<Ctx> + SizeWith<Ctx, Units = usize>>(&mut self) -> Result<N> where Ctx: Default {
        let ctx = Ctx::default();
        self.ioread_with(ctx)
    }

    /// Reads the type `N` from `Self`, with the parsing context `ctx`.
    /// **NB**: this will panic if the type you're reading has a size greater than 256. Plans are to have this allocate in larger cases.
    ///
    /// For the primitive numeric types, this will be at the host machine's endianness.
    ///
    /// # Example
    /// ```rust
    /// use scroll::{IOread, LE, BE};
    /// use std::io::Cursor;
    /// let bytes = [0xef, 0xbe, 0xb0, 0xb0, 0xfe, 0xed, 0xde, 0xad];
    /// let mut bytes = Cursor::new(&bytes[..]);
    /// let beef = bytes.ioread_with::<u16>(LE).unwrap();
    /// assert_eq!(0xbeef, beef);
    /// let b0 = bytes.ioread::<u8>().unwrap();
    /// assert_eq!(0xb0, b0);
    /// let b0 = bytes.ioread::<u8>().unwrap();
    /// assert_eq!(0xb0, b0);
    /// let feeddead = bytes.ioread_with::<u32>(BE).unwrap();
    /// assert_eq!(0xfeeddead, feeddead);
    /// ```
    #[inline]
    fn ioread_with<N: FromCtx<Ctx> + SizeWith<Ctx, Units = usize>>(&mut self, ctx: Ctx) -> Result<N> {
        let mut scratch = [0u8; 256];
        let size = N::size_with(&ctx);
        let mut buf = &mut scratch[0..size];
        self.read_exact(&mut buf)?;
        Ok(N::from_ctx(buf, ctx))
    }
}

/// Types that implement `Read` get methods defined in `IOread`
/// for free.
impl<Ctx: Copy, R: Read + ?Sized> IOread<Ctx> for R {}

/// An extension trait to `std::io::Write` streams; this only serializes simple types, like `u8`, `i32`, `f32`, `usize`, etc.
///
/// To write custom types with a single `iowrite::<YourType>` call, implement [`IntoCtx`](trait.IntoCtx.html) and [`SizeWith`](ctx/trait.SizeWith.html) for `YourType`.
pub trait IOwrite<Ctx: Copy>: Write
{
    /// Writes the type `N` into `Self`, with the parsing context `ctx`.
    /// **NB**: this will panic if the type you're writing has a size greater than 256. Plans are to have this allocate in larger cases.
    ///
    /// For the primitive numeric types, this will be at the host machine's endianness.
    ///
    /// # Example
    /// ```rust
    /// use scroll::IOwrite;
    /// use std::io::Cursor;
    ///
    /// let mut bytes = [0x0u8; 4];
    /// let mut bytes = Cursor::new(&mut bytes[..]);
    /// bytes.iowrite(0xdeadbeef as u32).unwrap();
    ///
    /// #[cfg(target_endian = "little")]
    /// assert_eq!(bytes.into_inner(), [0xef, 0xbe, 0xad, 0xde,]);
    /// #[cfg(target_endian = "big")]
    /// assert_eq!(bytes.into_inner(), [0xde, 0xad, 0xbe, 0xef,]);
    /// ```
    #[inline]
    fn iowrite<N: SizeWith<Ctx, Units = usize> + IntoCtx<Ctx>>(&mut self, n: N) -> Result<()> where Ctx: Default {
        let ctx = Ctx::default();
        self.iowrite_with(n, ctx)
    }

    /// Writes the type `N` into `Self`, with the parsing context `ctx`.
    /// **NB**: this will panic if the type you're writing has a size greater than 256. Plans are to have this allocate in larger cases.
    ///
    /// For the primitive numeric types, this will be at the host machine's endianness.
    ///
    /// # Example
    /// ```rust
    /// use scroll::{IOwrite, LE, BE};
    /// use std::io::{Write, Cursor};
    ///
    /// let mut bytes = [0x0u8; 10];
    /// let mut cursor = Cursor::new(&mut bytes[..]);
    /// cursor.write_all(b"hello").unwrap();
    /// cursor.iowrite_with(0xdeadbeef as u32, BE).unwrap();
    /// assert_eq!(cursor.into_inner(), [0x68, 0x65, 0x6c, 0x6c, 0x6f, 0xde, 0xad, 0xbe, 0xef, 0x0]);
    /// ```
    #[inline]
    fn iowrite_with<N: SizeWith<Ctx, Units = usize> + IntoCtx<Ctx>>(&mut self, n: N, ctx: Ctx) -> Result<()> {
        let mut buf = [0u8; 256];
        let size = N::size_with(&ctx);
        let buf = &mut buf[0..size];
        n.into_ctx(buf, ctx);
        self.write_all(buf)?;
        Ok(())
    }
}

/// Types that implement `Write` get methods defined in `IOwrite`
/// for free.
impl<Ctx: Copy, W: Write + ?Sized> IOwrite<Ctx> for W {}