1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/*! Sciter's platform independent graphics interface.

Used in custom behaviors / event handlers to draw on element's surface in native code.
Essentially this mimics [`Graphics`](https://sciter.com/docs/content/sciter/Graphics.htm) scripting object as close as possible.

*/
use capi::scgraphics::{HIMG, HPATH, SC_ANGLE, SC_COLOR, SC_COLOR_STOP, SC_DIM, SC_POS};
use capi::sctypes::{BOOL, LPCBYTE, LPVOID, POINT, SIZE, UINT};
use std::ptr::null_mut;
use value::{FromValue, Value};
use _GAPI;

pub use capi::scgraphics::{HGFX, GRAPHIN_RESULT};
pub use capi::scgraphics::{DRAW_PATH, LINE_CAP, LINE_JOIN};

/// Supported image encodings for [`Image.save()`](struct.Image.html#method.save).
#[derive(Clone, Copy)]
#[derive(Debug, PartialEq)]
pub enum SaveImageEncoding {
  /// Raw bitmap in a `[a,b,g,r, a,b,g,r, ...]` form.
  Raw,
  /// Portable Network Graphics format.
  Png,
  /// JPEG with the specified quality level (in range of `10..100`).
  Jpeg(u8),
  /// WebP with the specified quality level (in range of `0..100`, where `0` means a lossless compression).
  Webp(u8),
}

macro_rules! ok_or {
  ($rv:expr, $ok:ident) => {
    if $ok == GRAPHIN_RESULT::OK {
      Ok($rv)
    } else {
      Err($ok)
    }
  };
}

/// A specialized `Result` type for graphics operations.
pub type Result<T> = ::std::result::Result<T, GRAPHIN_RESULT>;

/// Color type in the `RGBA` form.
pub type Color = SC_COLOR;

/// Position on a surface in `(x, y)` form.
pub type Pos = (SC_POS, SC_POS);

/// Size in `(width, height)` form.
pub type Size = (SC_DIM, SC_DIM);

/// Angle type (in radians).
pub type Angle = SC_ANGLE;

/// Dimension type.
pub type Dim = SC_DIM;

/// Graphics image object.
pub struct Image(HIMG);

/// Graphics path object.
pub struct Path(HPATH);

/// Graphics object. Represents graphic surface of the element.
pub struct Graphics(HGFX);

/// Construct a color value (in `RGBA` form) from the `red`, `green` and `blue` components.
pub fn rgb(red: u8, green: u8, blue: u8) -> Color {
  (_GAPI.RGBA)(u32::from(red), u32::from(green), u32::from(blue), 255)
}

/// Construct a color value (in `RGBA` form) from the `red`, `green`, `blue` and `opacity` components.
pub fn rgba((r, g, b): (u8, u8, u8), opacity: u8) -> Color {
	let color = rgb(r, g, b);
  u32::from(opacity) | color << 24
}


///////////////////////////////////////////////////////////////////////////////
// Image

/// Destroy pointed image object.
impl Drop for Image {
  fn drop(&mut self) {
    (_GAPI.imageRelease)(self.0);
  }
}

/// Copies image object.
///
/// All allocated objects are reference counted so copying is just a matter of increasing reference counts.
impl Clone for Image {
  fn clone(&self) -> Self {
    let dst = Image(self.0);
    (_GAPI.imageAddRef)(dst.0);
    dst
  }
}

/// Get an `Image` object contained in the `Value`.
impl FromValue for Image {
  fn from_value(v: &Value) -> Option<Image> {
    let mut h = null_mut();
    let ok = (_GAPI.vUnWrapImage)(v.as_cptr(), &mut h);
    if ok == GRAPHIN_RESULT::OK {
    	(_GAPI.imageAddRef)(h);
      Some(Image(h))
    } else {
      None
    }
  }
}

/// Store the `Image` object as a `Value`.
impl From<Image> for Value {
  fn from(i: Image) -> Value {
    let mut v = Value::new();
    let ok = (_GAPI.vWrapImage)(i.0, v.as_ptr());
    assert!(ok == GRAPHIN_RESULT::OK);
    v
  }
}

impl Image {
  /// Create a new blank image.
  pub fn new((width, height): (u32, u32), with_alpha: bool) -> Result<Image> {
    let mut h = null_mut();
    let ok = (_GAPI.imageCreate)(&mut h, width, height, with_alpha as BOOL);
    ok_or!(Image(h), ok)
  }

  /// Create image from `BGRA` data. Size of the pixmap is `width * height * 4` bytes.
  pub fn with_data((width, height): (u32, u32), with_alpha: bool, pixmap: &[u8]) -> Result<Image> {
    let mut h = null_mut();
    let ok = (_GAPI.imageCreateFromPixmap)(&mut h, width, height, with_alpha as BOOL, pixmap.as_ptr());
    ok_or!(Image(h), ok)
  }

  /// Load image from memory.
  ///
  /// Supported formats are: GIF, JPEG, PNG, WebP. On Windows also are BMP, ICO, TIFF and WMP.
  pub fn load(image_data: &[u8]) -> Result<Image> {
    let mut h = null_mut();
    let ok = (_GAPI.imageLoad)(image_data.as_ptr(), image_data.len() as UINT, &mut h);
    ok_or!(Image(h), ok)
  }

  /// Save content of the image as a byte vector.
  pub fn save(&self, encoding: SaveImageEncoding) -> Result<Vec<u8>> {
    extern "system" fn on_save(prm: LPVOID, data: LPCBYTE, data_length: UINT) {
      assert!(!prm.is_null());
      assert!(!data.is_null());
      unsafe {
        let param = prm as *mut Vec<u8>;
        let dst = &mut *param;
        let src = ::std::slice::from_raw_parts(data, data_length as usize);
        dst.extend_from_slice(src);
      }
    }
    use capi::scgraphics::IMAGE_ENCODING::*;
    let (enc, q) = match encoding {
      SaveImageEncoding::Raw => (RAW, 0),
      SaveImageEncoding::Png => (PNG, 0),
      SaveImageEncoding::Jpeg(q) => (JPG, q),
      SaveImageEncoding::Webp(q) => (WEBP, q),
    };
    let mut data = Vec::new();
    let ok = (_GAPI.imageSave)(self.0, on_save, &mut data as *mut _ as LPVOID, enc, u32::from(q));
    ok_or!(data, ok)
  }

  /// Render on bitmap image using methods of the [`Graphics`](struct.Graphics.html) object.
  ///
  /// The image must be created using [`Image::new()`](struct.Image.html#method.new) or
  /// [`Image::with_data()`](struct.Image.html#method.with_data) methods
  /// or loaded from a [BMP](https://en.wikipedia.org/wiki/BMP_file_format) file.
  ///
  /// `PaintFn` painter type must be the following:
  ///
  /// ```rust
  /// use sciter::graphics::{Graphics, Result};
  ///
  /// fn paint(gfx: &mut Graphics, (width, height): (f32, f32)) -> Result<()>
  /// # { Ok(()) }
  /// ```
  ///
  /// Note that errors inside painter are promoted back to the caller of the `paint()`.
  ///
  /// # Example:
  ///
  /// ```rust
  /// # use sciter::graphics::Image;
  /// let mut image = Image::new((100, 100), false).unwrap();
  /// image.paint(|gfx, size| {
  ///   gfx.rectangle((5.0, 5.0), (size.0 - 5.0, size.1 - 5.0))?;
  ///   Ok(())
  ///	}).unwrap();
  /// ```
  pub fn paint<PaintFn>(&mut self, painter: PaintFn) -> Result<()>
  where
    PaintFn: Fn(&mut Graphics, (f32, f32)) -> Result<()>,
  {
    #[repr(C)]
    struct Payload<PaintFn> {
      painter: PaintFn,
      result: Result<()>,
    }
    extern "system" fn on_paint<PaintFn: Fn(&mut Graphics, (f32, f32)) -> Result<()>>(prm: LPVOID, hgfx: HGFX, width: UINT, height: UINT) {
      let param = prm as *mut Payload<PaintFn>;
      assert!(!param.is_null());
      assert!(!hgfx.is_null());
    	let payload = unsafe { &mut *param };
      let ok = if !hgfx.is_null() {
      	let mut gfx = Graphics::from(hgfx);
      	(payload.painter)(&mut gfx, (width as f32, height as f32))
      } else {
      	Err(GRAPHIN_RESULT::BAD_PARAM)
      };
      payload.result = ok;
    }
    let payload = Payload {
      painter: painter,
      result: Ok(()),
    };
    let param = Box::new(payload);
    let param = Box::into_raw(param);
    let ok = (_GAPI.imagePaint)(self.0, on_paint::<PaintFn>, param as LPVOID);
    let ok = ok_or!((), ok);
    let param = unsafe { Box::from_raw(param) };
    ok.and(param.result)
  }

  /// Get width and height of the image (in pixels).
  pub fn dimensions(&self) -> Result<(u32, u32)> {
    let mut alpha = 0;
    let mut w = 0;
    let mut h = 0;
    let ok = (_GAPI.imageGetInfo)(self.0, &mut w, &mut h, &mut alpha);
    ok_or!((w, h), ok)
  }

  /// Clear image by filling it with the black color.
  pub fn clear(&mut self) -> Result<()> {
    let ok = (_GAPI.imageClear)(self.0, 0 as Color);
    ok_or!((), ok)
  }

  /// Clear image by filling it with the specified `color`.
  pub fn clear_with(&mut self, color: Color) -> Result<()> {
    let ok = (_GAPI.imageClear)(self.0, color);
    ok_or!((), ok)
  }
}

///////////////////////////////////////////////////////////////////////////////
// Path

/// Destroy pointed path object.
impl Drop for Path {
  fn drop(&mut self) {
    (_GAPI.pathRelease)(self.0);
  }
}

/// Copies path object.
///
/// All allocated objects are reference counted so copying is just a matter of increasing reference counts.
impl Clone for Path {
  fn clone(&self) -> Self {
    let dst = Path(self.0);
    (_GAPI.pathAddRef)(dst.0);
    dst
  }
}

/// Get a `Path` object contained in the `Value`.
impl FromValue for Path {
  fn from_value(v: &Value) -> Option<Path> {
    let mut h = null_mut();
    let ok = (_GAPI.vUnWrapPath)(v.as_cptr(), &mut h);
    if ok == GRAPHIN_RESULT::OK {
    	(_GAPI.pathAddRef)(h);
      Some(Path(h))
    } else {
      None
    }
  }
}

/// Store the `Path` object as a `Value`.
impl From<Path> for Value {
  fn from(i: Path) -> Value {
    let mut v = Value::new();
    let ok = (_GAPI.vWrapPath)(i.0, v.as_ptr());
    assert!(ok == GRAPHIN_RESULT::OK);
    v
  }
}

impl Path {
  /// Create a new empty path.
  pub fn new() -> Result<Path> {
    let mut h = null_mut();
    let ok = (_GAPI.pathCreate)(&mut h);
    ok_or!(Path(h), ok)
  }

  /// Close the current path/figure.
  pub fn close(&mut self) -> Result<()> {
    let ok = (_GAPI.pathClosePath)(self.0);
    ok_or!((), ok)
  }

  /// Move the current drawing path position to `x,y`.
  ///
  /// If `is_relative` is `true` then the specified coordinates are interpreted as deltas from the current path position.
  pub fn move_to(&mut self, point: Pos, is_relative: bool) -> Result<&mut Path> {
    let ok = (_GAPI.pathMoveTo)(self.0, point.0, point.1, is_relative as BOOL);
    ok_or!(self, ok)
  }

  /// Draw a line and move the current drawing path position to `x,y`.
  ///
  /// If `is_relative` is `true` then the specified coordinates are interpreted as deltas from the current path position.
  pub fn line_to(&mut self, point: Pos, is_relative: bool) -> Result<&mut Path> {
    let ok = (_GAPI.pathLineTo)(self.0, point.0, point.1, is_relative as BOOL);
    ok_or!(self, ok)
  }

  /// Draw an arc.
  pub fn arc_to(&mut self, xy: Pos, angle: Angle, rxy: Pos, is_large: bool, is_clockwise: bool, is_relative: bool) -> Result<&mut Path> {
    let ok = (_GAPI.pathArcTo)(
      self.0,
      xy.0,
      xy.1,
      angle,
      rxy.0,
      rxy.1,
      is_large as BOOL,
      is_clockwise as BOOL,
      is_relative as BOOL,
    );
    ok_or!(self, ok)
  }

  /// Draw a quadratic Bézier curve.
  ///
  /// If `is_relative` is `true` then the specified coordinates are interpreted as deltas from the current path position.
  pub fn quadratic_curve_to(&mut self, control: Pos, end: Pos, is_relative: bool) -> Result<&mut Path> {
    let ok = (_GAPI.pathQuadraticCurveTo)(self.0, control.0, control.1, end.0, end.1, is_relative as BOOL);
    ok_or!(self, ok)
  }

  /// Draw a cubic Bézier curve.
  ///
  /// If `is_relative` is `true` then the specified coordinates are interpreted as deltas from the current path position.
  pub fn bezier_curve_to(&mut self, control1: Pos, control2: Pos, end: Pos, is_relative: bool) -> Result<&mut Path> {
    let ok = (_GAPI.pathBezierCurveTo)(
      self.0,
      control1.0,
      control1.1,
      control2.0,
      control2.1,
      end.0,
      end.1,
      is_relative as BOOL,
    );
    ok_or!(self, ok)
  }
}

///////////////////////////////////////////////////////////////////////////////
// Graphics

/// A graphics state guard.
///
/// Used to automatically restore a previous saved graphics attributes state.
pub struct State<'a>(&'a mut Graphics);

/// Restore graphics state.
impl<'a> Drop for State<'a> {
	fn drop(&mut self) {
		self.0.pop_state().ok();
	}
}

/// Dereference to `Graphics`.
impl<'a> ::std::ops::Deref for State<'a> {
	type Target = Graphics;
	fn deref(&self) -> &Graphics {
		self.0
	}
}

/// Dereference to `Graphics`.
impl<'a> ::std::ops::DerefMut for State<'a> {
	fn deref_mut(&mut self) -> &mut Graphics {
		self.0
	}
}

/// Destroy pointed graphics object.
impl Drop for Graphics {
  fn drop(&mut self) {
    (_GAPI.gRelease)(self.0);
  }
}

/// Copies graphics object.
///
/// All allocated objects are reference counted so copying is just a matter of increasing reference counts.
impl Clone for Graphics {
  fn clone(&self) -> Self {
    let dst = Graphics(self.0);
    (_GAPI.gAddRef)(dst.0);
    dst
  }
}

/// Get an `Graphics` object contained in the `Value`.
impl FromValue for Graphics {
  fn from_value(v: &Value) -> Option<Graphics> {
    let mut h = null_mut();
    let ok = (_GAPI.vUnWrapGfx)(v.as_cptr(), &mut h);
    if ok == GRAPHIN_RESULT::OK {
    	(_GAPI.gAddRef)(h);
      Some(Graphics(h))
    } else {
      None
    }
  }
}

/// Store the `Graphics` object as a `Value`.
impl From<Graphics> for Value {
  fn from(i: Graphics) -> Value {
    let mut v = Value::new();
    let ok = (_GAPI.vWrapGfx)(i.0, v.as_ptr());
    assert!(ok == GRAPHIN_RESULT::OK);
    v
  }
}

/// Construct Graphics object from `HGFX` handle.
impl From<HGFX> for Graphics {
	fn from(hgfx: HGFX) -> Graphics {
		assert!(!hgfx.is_null());
  	(_GAPI.gAddRef)(hgfx);
		Graphics(hgfx)
	}
}

/// Save/restore graphics state.
impl Graphics {
  /// Save the current graphics attributes on top of the internal state stack.
  ///
  /// It will be restored automatically.
  ///
  /// # Example:
  ///
  /// ```rust
  /// use sciter::graphics::{Image, rgb};
  ///
  /// let mut image = Image::new((100, 100), false).unwrap();
  /// image.paint(|gfx, size| {
  ///   let mut gfx = gfx.save_state()?;
  ///   gfx
  ///     .line_width(6.0)?
  ///     .line_color(rgb(0xD4, 0, 0))?
  ///     .fill_color(rgb(0xD4, 0, 0))?
  ///     .line((-30., 0.), (83., 0.))?
  ///     ;
  ///   Ok(())
  /// }).unwrap();
	pub fn save_state(&mut self) -> Result<State> {
		self.push_state().map(|gfx| State(gfx))
	}

  /// Manually save the current graphics attributes on top of the internal state stack.
  fn push_state(&mut self) -> Result<&mut Self> {
    let ok = (_GAPI.gStateSave)(self.0);
    ok_or!(self, ok)
  }

  /// Manually restore graphics attributes from top of the internal state stack.
  fn pop_state(&mut self) -> Result<&mut Self> {
    let ok = (_GAPI.gStateRestore)(self.0);
    ok_or!(self, ok)
  }
}

/// Primitives drawing operations.
///
/// All operations use the current fill and stroke brushes.
impl Graphics {
  /// Draw a line from the `start` to the `end`.
  pub fn line(&mut self, start: Pos, end: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gLine)(self.0, start.0, start.1, end.0, end.1);
    ok_or!(self, ok)
  }

  /// Draw a rectangle.
  pub fn rectangle(&mut self, left_top: Pos, right_bottom: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gRectangle)(self.0, left_top.0, left_top.1, right_bottom.0, right_bottom.1);
    ok_or!(self, ok)
  }

  /// Draw a rounded rectangle with the same corners.
  pub fn round_rect(&mut self, left_top: Pos, right_bottom: Pos, radius: Dim) -> Result<&mut Self> {
    let rad: [Dim; 8] = [radius; 8usize];
    let ok = (_GAPI.gRoundedRectangle)(self.0, left_top.0, left_top.1, right_bottom.0, right_bottom.1, rad.as_ptr());
    ok_or!(self, ok)
  }

  /// Draw a rounded rectangle with different corners.
  pub fn round_rect4(&mut self, left_top: Pos, right_bottom: Pos, radius: (Dim, Dim, Dim, Dim)) -> Result<&mut Self> {
    let r = radius;
    let rad: [Dim; 8] = [r.0, r.0, r.1, r.1, r.2, r.2, r.3, r.3];
    let ok = (_GAPI.gRoundedRectangle)(self.0, left_top.0, left_top.1, right_bottom.0, right_bottom.1, rad.as_ptr());
    ok_or!(self, ok)
  }

  /// Draw an ellipse.
  pub fn ellipse(&mut self, xy: Pos, radii: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gEllipse)(self.0, xy.0, xy.1, radii.0, radii.1);
    ok_or!(self, ok)
  }

  /// Draw a circle.
  pub fn circle(&mut self, xy: Pos, radius: Dim) -> Result<&mut Self> {
    let ok = (_GAPI.gEllipse)(self.0, xy.0, xy.1, radius, radius);
    ok_or!(self, ok)
  }

  /// Draw a closed arc.
  pub fn arc(&mut self, xy: Pos, rxy: Pos, start: Angle, sweep: Angle) -> Result<&mut Self> {
    let ok = (_GAPI.gArc)(self.0, xy.0, xy.1, rxy.0, rxy.1, start, sweep);
    ok_or!(self, ok)
  }

  /// Draw a star.
  pub fn star(&mut self, xy: Pos, r1: Dim, r2: Dim, start: Angle, rays: usize) -> Result<&mut Self> {
    let ok = (_GAPI.gStar)(self.0, xy.0, xy.1, r1, r2, start, rays as UINT);
    ok_or!(self, ok)
  }

  /// Draw a closed polygon.
  pub fn polygon(&mut self, points: &[Pos]) -> Result<&mut Self> {
    // A compile time assert (credits to https://github.com/nvzqz/static-assertions-rs)
    type PosArray = [Pos; 2];
    type FloatArray = [SC_POS; 4];
    let _ = ::std::mem::transmute::<FloatArray, PosArray>;

    let ok = (_GAPI.gPolygon)(self.0, points.as_ptr() as *const SC_POS, points.len() as UINT);
    ok_or!(self, ok)
  }

  /// Draw a polyline.
  pub fn polyline(&mut self, points: &[Pos]) -> Result<&mut Self> {
    // A compile time assert (credits to https://github.com/nvzqz/static-assertions-rs)
    type PosArray = [Pos; 2];
    type FloatArray = [SC_POS; 4];
    let _ = ::std::mem::transmute::<FloatArray, PosArray>;

    let ok = (_GAPI.gPolyline)(self.0, points.as_ptr() as *const SC_POS, points.len() as UINT);
    ok_or!(self, ok)
  }
}

/// Drawing attributes.
impl Graphics {
  /// Set the color for solid fills for subsequent drawings.
  pub fn fill_color(&mut self, color: Color) -> Result<&mut Self> {
    let ok = (_GAPI.gFillColor)(self.0, color);
    ok_or!(self, ok)
  }

  /// Set the even/odd rule of solid fills for subsequent drawings.
  ///
  /// `false` means "fill non zero".
  pub fn fill_mode(&mut self, is_even: bool) -> Result<&mut Self> {
    let ok = (_GAPI.gFillMode)(self.0, is_even as BOOL);
    ok_or!(self, ok)
  }

  /// Disables fills for subsequent drawing operations.
  pub fn no_fill(&mut self) -> Result<&mut Self> {
    self.fill_color(0 as Color)
  }

  /// Set the line color for subsequent drawings.
  pub fn line_color(&mut self, color: Color) -> Result<&mut Self> {
    let ok = (_GAPI.gLineColor)(self.0, color);
    ok_or!(self, ok)
  }

  /// Set the line width for subsequent drawings.
  pub fn line_width(&mut self, width: Dim) -> Result<&mut Self> {
    let ok = (_GAPI.gLineWidth)(self.0, width);
    ok_or!(self, ok)
  }

  /// Set the line cap mode (stroke dash ending style) for subsequent drawings.
  ///
  /// It determines how the end points of every line are drawn.
  /// There are three possible values for this property and those are: `BUTT`, `ROUND` and `SQUARE`.
  /// By default this property is set to `BUTT`.
  pub fn line_cap(&mut self, style: LINE_CAP) -> Result<&mut Self> {
    let ok = (_GAPI.gLineCap)(self.0, style);
    ok_or!(self, ok)
  }

  /// Set the line join mode for subsequent drawings.
  ///
  /// It determines how two connecting segments (of lines, arcs or curves)
  /// with non-zero lengths in a shape are joined together
  /// (degenerate segments with zero lengths, whose specified endpoints and control points
  /// are exactly at the same position, are skipped).
  pub fn line_join(&mut self, style: LINE_JOIN) -> Result<&mut Self> {
    let ok = (_GAPI.gLineJoin)(self.0, style);
    ok_or!(self, ok)
  }

  /// Disable outline drawing.
  pub fn no_line(&mut self) -> Result<&mut Self> {
    self.line_width(0.0)
  }

  /// Setup parameters of a linear gradient of lines.
  pub fn line_linear_gradient(&mut self, start: Pos, end: Pos, c1: Color, c2: Color) -> Result<&mut Self> {
    let stops = [(c1, 0.0), (c2, 1.0)];
    self.line_linear_gradients(start, end, &stops)
  }

  /// Setup parameters of a linear gradient of lines using multiple colors and color stop positions `(0.0 ... 1.0)`.
  pub fn line_linear_gradients(&mut self, start: Pos, end: Pos, colors: &[(Color, Dim)]) -> Result<&mut Self> {
    let _ = ::std::mem::transmute::<SC_COLOR_STOP, (Color, Dim)>;
    let ok = (_GAPI.gLineGradientLinear)(
      self.0,
      start.0,
      start.1,
      end.0,
      end.1,
      colors.as_ptr() as *const SC_COLOR_STOP,
      colors.len() as UINT,
    );
    ok_or!(self, ok)
  }

  /// Setup parameters of linear gradient fills.
  pub fn fill_linear_gradient(&mut self, c1: Color, c2: Color, start: Pos, end: Pos) -> Result<&mut Self> {
    let stops = [(c1, 0.0), (c2, 1.0)];
    self.fill_linear_gradients(&stops, start, end)
  }

  /// Setup parameters of linear gradient fills using multiple colors and color stop positions `(0.0 ... 1.0)`.
  pub fn fill_linear_gradients(&mut self, colors: &[(Color, Dim)], start: Pos, end: Pos) -> Result<&mut Self> {
    let _ = ::std::mem::transmute::<SC_COLOR_STOP, (Color, Dim)>;
    let ok = (_GAPI.gFillGradientLinear)(
      self.0,
      start.0,
      start.1,
      end.0,
      end.1,
      colors.as_ptr() as *const SC_COLOR_STOP,
      colors.len() as UINT,
    );
    ok_or!(self, ok)
  }

  /// Setup parameters of a radial gradient of lines.
  pub fn line_radial_gradient(&mut self, point: Pos, radii: (Dim, Dim), c1: Color, c2: Color) -> Result<&mut Self> {
    let stops = [(c1, 0.0), (c2, 1.0)];
    self.line_radial_gradients(point, radii, &stops)
  }

  /// Setup parameters of a radial gradient of lines using multiple colors and color stop positions `(0.0 ... 1.0)`.
  pub fn line_radial_gradients(&mut self, point: Pos, radii: (Dim, Dim), colors: &[(Color, Dim)]) -> Result<&mut Self> {
    let _ = ::std::mem::transmute::<SC_COLOR_STOP, (Color, Dim)>;
    let ok = (_GAPI.gLineGradientRadial)(
      self.0,
      point.0,
      point.1,
      radii.0,
      radii.1,
      colors.as_ptr() as *const SC_COLOR_STOP,
      colors.len() as UINT,
    );
    ok_or!(self, ok)
  }

  /// Setup parameters of radial gradient of fills.
  pub fn fill_radial_gradient(&mut self, c1: Color, c2: Color, point: Pos, radii: (Dim, Dim)) -> Result<&mut Self> {
    let stops = [(c1, 0.0), (c2, 1.0)];
    self.fill_radial_gradients(&stops, point, radii)
  }

  /// Setup parameters of radial gradient of fills using multiple colors and color stop positions `(0.0 ... 1.0)`.
  pub fn fill_radial_gradients(&mut self, colors: &[(Color, Dim)], point: Pos, radii: (Dim, Dim)) -> Result<&mut Self> {
    let _ = ::std::mem::transmute::<SC_COLOR_STOP, (Color, Dim)>;
    let ok = (_GAPI.gFillGradientRadial)(
      self.0,
      point.0,
      point.1,
      radii.0,
      radii.1,
      colors.as_ptr() as *const SC_COLOR_STOP,
      colors.len() as UINT,
    );
    ok_or!(self, ok)
  }
}

/// Affine transformations.
impl Graphics {
  /// Rotate coordinate system on `radians` angle.
  pub fn rotate(&mut self, radians: Angle) -> Result<&mut Self> {
    let ok = (_GAPI.gRotate)(self.0, radians, None, None);
    ok_or!(self, ok)
  }

  /// Rotate coordinate system on `radians` angle around the `center`.
  pub fn rotate_around(&mut self, radians: Angle, center: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gRotate)(self.0, radians, Some(&center.0), Some(&center.1));
    ok_or!(self, ok)
  }

  /// Move origin of coordinate system to the `(to_x, to_y)` point.
  pub fn translate(&mut self, to_xy: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gTranslate)(self.0, to_xy.0, to_xy.1);
    ok_or!(self, ok)
  }

  /// Scale coordinate system.
  ///
  /// `(sc_x, sc_y)` are the scale factors in the horizontal and vertical directions respectively.
  ///
  /// Both parameters must be positive numbers.
  /// Values smaller than `1.0` reduce the unit size and values larger than `1.0` increase the unit size.
  pub fn scale(&mut self, sc_xy: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gScale)(self.0, sc_xy.0, sc_xy.1);
    ok_or!(self, ok)
  }

  /// Setup a skewing (shearing) transformation.
  pub fn skew(&mut self, sh_xy: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gSkew)(self.0, sh_xy.0, sh_xy.1);
    ok_or!(self, ok)
  }

  /// Multiply the current transformation with the matrix described by the arguments.
  ///
  /// It allows to scale, rotate, move and skew the context
  /// as described by:
  ///
  /// ```text
  ///    scale_x  skew_y   move_x
  /// [  skew_x   scale_y  move_y  ]
  ///    0        0        1
  /// ```
  ///
  /// where
  ///
  /// * `scale_x`, `scale_y`: horizontal and vertical scaling,
  /// * `skew_x`, `skew_y`:   horizontal and vertical shearing (skewing),
  /// * `move_x`, `move_y`:   horizontal and vertical moving.
  ///
  pub fn transform(&mut self, scale_by: Pos, skew_by: Pos, move_to: Pos) -> Result<&mut Self> {
    // m11, m12, m21, m22, dx, dy
    // scx, shx, shy, scy, dx, dy
    let ok = (_GAPI.gTransform)(self.0, scale_by.0, skew_by.0, skew_by.1, scale_by.0, move_to.0, move_to.1);
    ok_or!(self, ok)
  }

  /// Multiply the current transformation with the matrix described by the arguments.
  ///
  /// It allows to scale, rotate, move and skew the context
  /// as described by:
  ///
  /// ```text
  ///    m11   m21  dx
  /// [  m12   m22  dy  ]
  ///    0     0    1
  /// ```
  ///
  /// * `m11` (`scale_x`): horizontal scaling
  /// * `m12` (`skew_x`):  horizontal skewing
  /// * `m21` (`skew_y`):  vertical skewing
  /// * `m22` (`scale_y`): vertical scaling
  /// * `dx`  (`move_x`):  horizontal moving
  /// * `dy`  (`move_y`):  vertical moving
  ///
  pub fn transform_matrix(&mut self, m11: Dim, m12: Dim, m21: Dim, m22: Dim, dx: Dim, dy: Dim) -> Result<&mut Self> {
    self.transform((m11, m22), (m12, m21), (dx, dy))
  }
}

/// Coordinate space.
impl Graphics {
  /// Translate coordinates.
  ///
  /// Translates coordinates from a coordinate system defined by `rotate()`, `scale()`, `translate()` and/or `skew()`
  /// to the screen coordinate system.
  pub fn world_to_screen(&self, mut xy: Pos) -> Result<Pos> {
    let ok = (_GAPI.gWorldToScreen)(self.0, &mut xy.0, &mut xy.1);
    ok_or!(xy, ok)
  }

  /// Translate coordinates.
  ///
  /// Translates coordinates from a coordinate system defined by `rotate()`, `scale()`, `translate()` and/or `skew()`
  /// to the screen coordinate system.
  pub fn world_to_screen1(&self, mut length: Dim) -> Result<Dim> {
    let mut dummy = 0.0;
    let ok = (_GAPI.gWorldToScreen)(self.0, &mut length, &mut dummy);
    ok_or!(length, ok)
  }

  /// Translate coordinates.
  ///
  /// Translates coordinates from screen coordinate system to the one defined by `rotate()`, `scale()`, `translate()` and/or `skew()`.
  pub fn screen_to_world(&self, mut xy: Pos) -> Result<Pos> {
    let ok = (_GAPI.gScreenToWorld)(self.0, &mut xy.0, &mut xy.1);
    ok_or!(xy, ok)
  }

  /// Translate coordinates.
  ///
  /// Translates coordinates from screen coordinate system to the one defined by `rotate()`, `scale()`, `translate()` and/or `skew()`.
  pub fn screen_to_world1(&self, mut length: Dim) -> Result<Dim> {
    let mut dummy = 0.0;
    let ok = (_GAPI.gScreenToWorld)(self.0, &mut length, &mut dummy);
    ok_or!(length, ok)
  }
}

/// Clipping.
impl Graphics {
  /// Push a clip layer defined by the specified rectangle bounds.
  pub fn push_clip_box(&mut self, left_top: Pos, right_bottom: Pos, opacity: Option<f32>) -> Result<&mut Self> {
    let ok = (_GAPI.gPushClipBox)(
      self.0,
      left_top.0,
      left_top.1,
      right_bottom.0,
      right_bottom.1,
      opacity.unwrap_or(1.0),
    );
    ok_or!(self, ok)
  }

  /// Push a clip layer defined by the specified `path` bounds.
  pub fn push_clip_path(&mut self, path: &Path, opacity: Option<f32>) -> Result<&mut Self> {
    let ok = (_GAPI.gPushClipPath)(self.0, path.0, opacity.unwrap_or(1.0));
    ok_or!(self, ok)
  }

  /// Pop a clip layer set by previous `push_clip_box()` or `push_clip_path()` calls.
  pub fn pop_clip(&mut self) -> Result<&mut Self> {
    let ok = (_GAPI.gPopClip)(self.0);
    ok_or!(self, ok)
  }
}

/// Image and path rendering.
impl Graphics {
  /// Draw the path object using current fill and stroke brushes.
  pub fn draw_path(&mut self, path: &Path, mode: DRAW_PATH) -> Result<&mut Self> {
    let ok = (_GAPI.gDrawPath)(self.0, path.0, mode);
    ok_or!(self, ok)
  }

  /// Draw the whole image onto the graphics surface.
  ///
  /// With the current transformation applied (scale, rotation).
  ///
  /// Performance: expensive.
  pub fn draw_image(&mut self, image: &Image, pos: Pos) -> Result<&mut Self> {
    let ok = (_GAPI.gDrawImage)(self.0, image.0, pos.0, pos.1, None, None, None, None, None, None, None);
    ok_or!(self, ok)
  }

  /// Draw a part of the image onto the graphics surface.
  ///
  /// With the current transformation applied (scale, rotation).
  ///
  /// Performance: expensive.
  pub fn draw_image_part(&mut self, image: &Image, dst_pos: Pos, dst_size: Size, src_pos: POINT, src_size: SIZE) -> Result<&mut Self> {
    let ix = src_pos.x as UINT;
    let iy = src_pos.y as UINT;
    let iw = src_size.cx as UINT;
    let ih = src_size.cy as UINT;
    let ok = (_GAPI.gDrawImage)(
      self.0,
      image.0,
      dst_pos.0,
      dst_pos.1,
      Some(&dst_size.0),
      Some(&dst_size.1),
      Some(&ix),
      Some(&iy),
      Some(&iw),
      Some(&ih),
      None,
    );
    ok_or!(self, ok)
  }

  /// Blend the image with the graphics surface.
  ///
  /// No affine transformations.
  ///
  /// Performance: less expensive.
  pub fn blend_image(&mut self, image: &Image, dst_pos: Pos, opacity: f32) -> Result<&mut Self> {
    let ok = (_GAPI.gDrawImage)(
      self.0,
      image.0,
      dst_pos.0,
      dst_pos.1,
      None,
      None,
      None,
      None,
      None,
      None,
      Some(&opacity),
    );
    ok_or!(self, ok)
  }

  /// Blend a part of the image with the graphics surface.
  ///
  /// No affine transformations.
  ///
  /// Performance: less expensive.
  pub fn blend_image_part(&mut self, image: &Image, dst_pos: Pos, opacity: f32, src_pos: POINT, src_size: SIZE) -> Result<&mut Self> {
    let ix = src_pos.x as UINT;
    let iy = src_pos.y as UINT;
    let iw = src_size.cx as UINT;
    let ih = src_size.cy as UINT;
    let ok = (_GAPI.gDrawImage)(
      self.0,
      image.0,
      dst_pos.0,
      dst_pos.1,
      None,
      None,
      Some(&ix),
      Some(&iy),
      Some(&iw),
      Some(&ih),
      Some(&opacity),
    );
    ok_or!(self, ok)
  }
}