scirs2_stats/
parallel_advanced.rs

1//! Advanced-advanced parallel processing for massive statistical computations
2//!
3//! This module provides cutting-edge parallel processing capabilities optimized
4//! for extremely large datasets (TB+ scale) with:
5//! - Distributed memory management
6//! - Hierarchical parallelism (threads + SIMD)
7//! - GPU acceleration integration
8//! - Out-of-core processing for datasets larger than RAM
9//! - Fault tolerance and automatic recovery
10//! - Real-time performance monitoring and optimization
11
12use crate::error::{StatsError, StatsResult};
13use scirs2_core::ndarray::ArrayView2;
14use scirs2_core::numeric::{Float, NumCast, One, Zero};
15use scirs2_core::{
16    parallel_ops::*,
17    simd_ops::{PlatformCapabilities, SimdUnifiedOps},
18};
19use std::collections::{HashMap, VecDeque};
20use std::marker::PhantomData;
21use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
22use std::sync::{Arc, Mutex, RwLock};
23use std::thread;
24use std::time::{Duration, Instant};
25
26/// Advanced-advanced parallel configuration for massive scale operations
27#[derive(Debug, Clone)]
28pub struct AdvancedParallelConfig {
29    /// Hardware configuration
30    pub hardware: HardwareConfig,
31    /// Parallel strategy selection
32    pub strategy: ParallelStrategy,
33    /// Memory management configuration
34    pub memory: MemoryConfig,
35    /// Performance optimization settings
36    pub optimization: OptimizationConfig,
37    /// Fault tolerance settings
38    pub fault_tolerance: FaultToleranceConfig,
39    /// GPU acceleration settings
40    pub gpu: GpuConfig,
41}
42
43/// Hardware configuration detection and optimization
44#[derive(Debug, Clone)]
45pub struct HardwareConfig {
46    /// Number of CPU cores
47    pub cpu_cores: usize,
48    /// Number of NUMA nodes
49    pub numa_nodes: usize,
50    /// L1/L2/L3 cache sizes
51    pub cachesizes: CacheSizes,
52    /// Memory bandwidth (GB/s)
53    pub memory_bandwidth: f64,
54    /// Platform SIMD capabilities
55    pub simd_capabilities: PlatformCapabilities,
56    /// Available GPU devices
57    pub gpu_devices: Vec<GpuDevice>,
58}
59
60/// Cache hierarchy information
61#[derive(Debug, Clone)]
62pub struct CacheSizes {
63    pub l1data: usize,
64    pub l1_instruction: usize,
65    pub l2_unified: usize,
66    pub l3_shared: usize,
67}
68
69/// GPU device information
70#[derive(Debug, Clone)]
71pub struct GpuDevice {
72    pub device_id: usize,
73    pub memory_gb: f64,
74    pub compute_capability: f64,
75    pub multiprocessors: usize,
76    pub max_threads_per_block: usize,
77}
78
79/// Parallel processing strategy
80#[derive(Debug, Clone, Copy)]
81pub enum ParallelStrategy {
82    /// CPU-only with optimal thread count
83    CpuOptimal,
84    /// CPU with SIMD vectorization
85    CpuSimd,
86    /// Hybrid CPU+GPU processing
87    HybridCpuGpu,
88    /// GPU-accelerated with CPU fallback
89    GpuPrimary,
90    /// Distributed across multiple machines
91    Distributed,
92    /// Adaptive selection based on workload
93    Adaptive,
94}
95
96/// Memory configuration for large-scale processing
97#[derive(Debug, Clone, Default)]
98pub struct MemoryConfig {
99    /// Available system RAM (bytes)
100    pub system_ram: usize,
101    /// Maximum memory usage limit
102    pub memory_limit: Option<usize>,
103    /// Enable out-of-core processing
104    pub enable_out_of_core: bool,
105    /// Chunk size for out-of-core operations
106    pub out_of_core_chunksize: usize,
107    /// Enable memory mapping
108    pub enable_memory_mapping: bool,
109    /// Memory pool size
110    pub memory_poolsize: usize,
111    /// Enable garbage collection
112    pub enable_gc: bool,
113}
114
115/// Performance optimization configuration
116#[derive(Debug, Clone)]
117pub struct OptimizationConfig {
118    /// Enable adaptive load balancing
119    pub adaptive_load_balancing: bool,
120    /// Work stealing enabled
121    pub work_stealing: bool,
122    /// Cache-aware task scheduling
123    pub cache_aware_scheduling: bool,
124    /// NUMA-aware allocation
125    pub numa_aware_allocation: bool,
126    /// Dynamic thread scaling
127    pub dynamic_thread_scaling: bool,
128    /// Performance monitoring interval
129    pub monitoring_interval: Duration,
130    /// Optimization aggressiveness (0.0-1.0)
131    pub optimization_aggressiveness: f64,
132}
133
134/// Fault tolerance configuration
135#[derive(Debug, Clone)]
136pub struct FaultToleranceConfig {
137    /// Enable automatic checkpointing
138    pub enable_checkpointing: bool,
139    /// Checkpoint interval
140    pub checkpoint_interval: Duration,
141    /// Enable automatic retry on failure
142    pub enable_retry: bool,
143    /// Maximum retry attempts
144    pub max_retries: usize,
145    /// Enable graceful degradation
146    pub enable_degradation: bool,
147    /// Health check interval
148    pub health_check_interval: Duration,
149}
150
151/// GPU acceleration configuration
152#[derive(Debug, Clone)]
153pub struct GpuConfig {
154    /// Enable GPU acceleration
155    pub enable_gpu: bool,
156    /// Preferred GPU device
157    pub preferred_device: Option<usize>,
158    /// GPU memory usage limit
159    pub gpu_memory_limit: Option<usize>,
160    /// CPU-GPU transfer threshold
161    pub transfer_threshold: usize,
162    /// Enable unified memory
163    pub enable_unified_memory: bool,
164    /// Stream count for async operations
165    pub stream_count: usize,
166}
167
168impl Default for AdvancedParallelConfig {
169    fn default() -> Self {
170        let cpu_cores = num_threads();
171        let system_ram = Self::detect_system_ram();
172
173        Self {
174            hardware: HardwareConfig {
175                cpu_cores,
176                numa_nodes: Self::detect_numa_nodes(),
177                cachesizes: Self::detect_cachesizes(),
178                memory_bandwidth: Self::detect_memory_bandwidth(),
179                simd_capabilities: PlatformCapabilities::detect(),
180                gpu_devices: Self::detect_gpu_devices(),
181            },
182            strategy: ParallelStrategy::Adaptive,
183            memory: MemoryConfig {
184                system_ram,
185                memory_limit: Some(system_ram * 3 / 4), // Use 75% of system RAM
186                enable_out_of_core: true,
187                out_of_core_chunksize: 1024 * 1024 * 1024, // 1GB chunks
188                enable_memory_mapping: true,
189                memory_poolsize: system_ram / 8,
190                enable_gc: true,
191            },
192            optimization: OptimizationConfig {
193                adaptive_load_balancing: true,
194                work_stealing: true,
195                cache_aware_scheduling: true,
196                numa_aware_allocation: true,
197                dynamic_thread_scaling: true,
198                monitoring_interval: Duration::from_millis(100),
199                optimization_aggressiveness: 0.8,
200            },
201            fault_tolerance: FaultToleranceConfig {
202                enable_checkpointing: false, // Disabled by default for performance
203                checkpoint_interval: Duration::from_secs(60),
204                enable_retry: true,
205                max_retries: 3,
206                enable_degradation: true,
207                health_check_interval: Duration::from_secs(10),
208            },
209            gpu: GpuConfig {
210                enable_gpu: false, // Conservative default
211                preferred_device: None,
212                gpu_memory_limit: None,
213                transfer_threshold: 1024 * 1024, // 1MB threshold
214                enable_unified_memory: false,
215                stream_count: 4,
216            },
217        }
218    }
219}
220
221impl AdvancedParallelConfig {
222    /// Detect system RAM size
223    fn detect_system_ram() -> usize {
224        // Enhanced system RAM detection using multiple methods
225        #[cfg(target_os = "linux")]
226        {
227            use std::fs;
228            if let Ok(meminfo) = fs::read_to_string("/proc/meminfo") {
229                for line in meminfo.lines() {
230                    if line.starts_with("MemTotal:") {
231                        if let Some(kb_str) = line.split_whitespace().nth(1) {
232                            if let Ok(kb) = kb_str.parse::<usize>() {
233                                return kb * 1024; // Convert KB to bytes
234                            }
235                        }
236                    }
237                }
238            }
239        }
240
241        #[cfg(target_os = "windows")]
242        {
243            // Would use GetPhysicallyInstalledSystemMemory on Windows
244            // For now, use environment variable if available
245            if let Ok(mem_str) = std::env::var("SCIRS_SYSTEM_RAM") {
246                if let Ok(mem_gb) = mem_str.parse::<usize>() {
247                    return mem_gb * 1024 * 1024 * 1024;
248                }
249            }
250        }
251
252        #[cfg(target_os = "macos")]
253        {
254            // Would use sysctl on macOS
255            // For now, use environment variable if available
256            if let Ok(mem_str) = std::env::var("SCIRS_SYSTEM_RAM") {
257                if let Ok(mem_gb) = mem_str.parse::<usize>() {
258                    return mem_gb * 1024 * 1024 * 1024;
259                }
260            }
261        }
262
263        // Fallback: Estimate based on available threads (rough heuristic)
264        let num_cores = num_threads().max(1);
265
266        if num_cores >= 16 {
267            32 * 1024 * 1024 * 1024 // 32GB for high-end systems
268        } else if num_cores >= 8 {
269            16 * 1024 * 1024 * 1024 // 16GB for mid-range systems
270        } else if num_cores >= 4 {
271            8 * 1024 * 1024 * 1024 // 8GB for entry-level systems
272        } else {
273            4 * 1024 * 1024 * 1024 // 4GB for minimal systems
274        }
275    }
276
277    /// Detect NUMA topology
278    fn detect_numa_nodes() -> usize {
279        // Enhanced NUMA detection using multiple methods
280        #[cfg(target_os = "linux")]
281        {
282            use std::fs;
283
284            // Check /sys/devices/system/node/ for NUMA nodes
285            if let Ok(entries) = fs::read_dir("/sys/devices/system/node") {
286                let mut numa_count = 0;
287                for entry in entries {
288                    if let Ok(entry) = entry {
289                        let name = entry.file_name();
290                        if let Some(name_str) = name.to_str() {
291                            if name_str.starts_with("node")
292                                && name_str[4..].parse::<usize>().is_ok()
293                            {
294                                numa_count += 1;
295                            }
296                        }
297                    }
298                }
299                if numa_count > 0 {
300                    return numa_count;
301                }
302            }
303
304            // Fallback: check lscpu output if available
305            if let Ok(output) = std::process::Command::new("lscpu").output() {
306                if let Ok(output_str) = String::from_utf8(output.stdout) {
307                    for line in output_str.lines() {
308                        if line.contains("NUMA node(s):") {
309                            if let Some(numa_str) = line.split(':').nth(1) {
310                                if let Ok(numa_count) = numa_str.trim().parse::<usize>() {
311                                    return numa_count;
312                                }
313                            }
314                        }
315                    }
316                }
317            }
318        }
319
320        // Heuristic: Systems with many cores likely have multiple NUMA nodes
321        let num_cores = num_threads();
322        if num_cores >= 32 {
323            4 // Assume 4 NUMA nodes for very large systems
324        } else if num_cores >= 16 {
325            2 // Assume 2 NUMA nodes for large systems
326        } else {
327            1 // Single NUMA node for smaller systems
328        }
329    }
330
331    /// Detect cache hierarchy
332    fn detect_cachesizes() -> CacheSizes {
333        // Enhanced cache detection using multiple methods
334        #[cfg(target_os = "linux")]
335        {
336            use std::fs;
337
338            let mut l1data = 32 * 1024;
339            let mut l1_instruction = 32 * 1024;
340            let mut l2_unified = 256 * 1024;
341            let mut l3_shared = 8 * 1024 * 1024;
342
343            // Try to read cache information from /sys/devices/system/cpu/cpu0/cache/
344            if let Ok(entries) = fs::read_dir("/sys/devices/system/cpu/cpu0/cache") {
345                for entry in entries {
346                    if let Ok(entry) = entry {
347                        let cache_path = entry.path();
348
349                        // Read cache level
350                        if let Ok(level_str) = fs::read_to_string(cache_path.join("level")) {
351                            if let Ok(level) = level_str.trim().parse::<u32>() {
352                                // Read cache size
353                                if let Ok(size_str) = fs::read_to_string(cache_path.join("size")) {
354                                    let size_str = size_str.trim();
355                                    let size = if size_str.ends_with('K') {
356                                        size_str[..size_str.len() - 1].parse::<usize>().unwrap_or(0)
357                                            * 1024
358                                    } else if size_str.ends_with('M') {
359                                        size_str[..size_str.len() - 1].parse::<usize>().unwrap_or(0)
360                                            * 1024
361                                            * 1024
362                                    } else {
363                                        size_str.parse::<usize>().unwrap_or(0)
364                                    };
365
366                                    // Read cache type
367                                    if let Ok(type_str) =
368                                        fs::read_to_string(cache_path.join("type"))
369                                    {
370                                        match (level, type_str.trim()) {
371                                            (1, "Data") => l1data = size,
372                                            (1, "Instruction") => l1_instruction = size,
373                                            (2, "Unified") => l2_unified = size,
374                                            (3, "Unified") => l3_shared = size,
375                                            _ => {} // Ignore other cache levels or types
376                                        }
377                                    }
378                                }
379                            }
380                        }
381                    }
382                }
383            }
384
385            CacheSizes {
386                l1data,
387                l1_instruction,
388                l2_unified,
389                l3_shared,
390            }
391        }
392
393        #[cfg(not(target_os = "linux"))]
394        {
395            // Fallback: Use reasonable defaults based on CPU generation heuristics
396            let num_cores = num_threads();
397
398            // Modern CPUs typically have larger caches
399            if num_cores >= 16 {
400                // High-end server/workstation CPU
401                CacheSizes {
402                    l1data: 48 * 1024,           // 48KB
403                    l1_instruction: 32 * 1024,   // 32KB
404                    l2_unified: 512 * 1024,      // 512KB
405                    l3_shared: 32 * 1024 * 1024, // 32MB
406                }
407            } else if num_cores >= 8 {
408                // Mid-range desktop CPU
409                CacheSizes {
410                    l1data: 32 * 1024,           // 32KB
411                    l1_instruction: 32 * 1024,   // 32KB
412                    l2_unified: 256 * 1024,      // 256KB
413                    l3_shared: 16 * 1024 * 1024, // 16MB
414                }
415            } else {
416                // Entry-level CPU
417                CacheSizes {
418                    l1data: 32 * 1024,          // 32KB
419                    l1_instruction: 32 * 1024,  // 32KB
420                    l2_unified: 256 * 1024,     // 256KB
421                    l3_shared: 6 * 1024 * 1024, // 6MB
422                }
423            }
424        }
425    }
426
427    /// Detect memory bandwidth using micro-benchmarks
428    fn detect_memory_bandwidth() -> f64 {
429        // Run a simple memory bandwidth benchmark
430        let testsize = 64 * 1024 * 1024; // 64MB test array
431        let iterations = 10;
432
433        let mut total_bandwidth = 0.0;
434        let mut successful_tests = 0;
435
436        for _ in 0..iterations {
437            if let Some(bandwidth) = Self::measure_memory_bandwidth(testsize) {
438                total_bandwidth += bandwidth;
439                successful_tests += 1;
440            }
441        }
442
443        if successful_tests > 0 {
444            let avg_bandwidth = total_bandwidth / successful_tests as f64;
445            // Cap at reasonable maximum (modern DDR4/DDR5 peak theoretical)
446            avg_bandwidth.min(200.0) // Max 200 GB/s
447        } else {
448            // Fallback estimates based on system characteristics
449            let num_cores = num_threads();
450            if num_cores >= 16 {
451                100.0 // High-end system with fast memory
452            } else if num_cores >= 8 {
453                50.0 // Mid-range system
454            } else {
455                25.6 // Entry-level system
456            }
457        }
458    }
459
460    /// Measure memory bandwidth using sequential read/write operations
461    fn measure_memory_bandwidth(size: usize) -> Option<f64> {
462        use std::time::Instant;
463
464        // Allocate test arrays
465        let source = vec![1.0f64; size / 8]; // size in bytes / 8 bytes per f64
466        let mut dest = vec![0.0f64; size / 8];
467
468        // Warm up the memory
469        for i in 0..source.len().min(1000) {
470            dest[i] = source[i];
471        }
472
473        // Measure bandwidth with multiple copy operations
474        let start = Instant::now();
475
476        // Perform memory copy operations
477        for _ in 0..4 {
478            dest.copy_from_slice(&source);
479            // Prevent compiler optimization
480            std::hint::black_box(&dest);
481        }
482
483        let duration = start.elapsed();
484
485        if duration.as_nanos() > 0 {
486            let bytes_transferred = (size * 4 * 2) as f64; // 4 iterations, read + write
487            let seconds = duration.as_secs_f64();
488            let bandwidth_gbps = (bytes_transferred / seconds) / (1024.0 * 1024.0 * 1024.0);
489            Some(bandwidth_gbps)
490        } else {
491            None
492        }
493    }
494
495    /// Detect available GPU devices
496    fn detect_gpu_devices() -> Vec<GpuDevice> {
497        // Simplified - would use CUDA/OpenCL device queries
498        vec![]
499    }
500}
501
502/// Advanced-advanced parallel processor for massive datasets
503pub struct AdvancedParallelProcessor<F> {
504    config: AdvancedParallelConfig,
505    thread_pool: Option<ThreadPool>,
506    performance_monitor: Arc<PerformanceMonitor>,
507    memory_manager: Arc<MemoryManager>,
508    gpu_context: Option<GpuContext>,
509    _phantom: PhantomData<F>,
510}
511
512/// Advanced thread pool with work stealing and adaptive scaling
513pub struct ThreadPool {
514    workers: Vec<Worker>,
515    work_queue: Arc<Mutex<VecDeque<Task>>>,
516    shutdown: Arc<AtomicBool>,
517    active_workers: Arc<AtomicUsize>,
518}
519
520/// Worker thread with local work queue
521pub struct Worker {
522    id: usize,
523    thread: Option<thread::JoinHandle<()>>,
524    local_queue: VecDeque<Task>,
525    numa_node: Option<usize>,
526}
527
528/// Task for parallel execution
529pub struct Task {
530    id: u64,
531    priority: u8,
532    complexity: f64,
533    datasize: usize,
534    function: Box<dyn FnOnce() -> TaskResult + Send>,
535}
536
537/// Task execution result
538#[derive(Debug)]
539pub struct TaskResult {
540    pub success: bool,
541    pub execution_time: Duration,
542    pub memory_used: usize,
543    pub error: Option<String>,
544}
545
546/// Real-time performance monitoring
547pub struct PerformanceMonitor {
548    metrics: RwLock<PerformanceMetrics>,
549    history: RwLock<VecDeque<PerformanceSnapshot>>,
550    monitoring_active: AtomicBool,
551}
552
553/// Memory usage statistics for monitoring
554#[derive(Debug, Clone)]
555pub struct MemoryUsageStats {
556    /// Current allocated memory in bytes
557    pub current_allocated: usize,
558    /// Peak allocated memory in bytes
559    pub peak_allocated: usize,
560    /// Total number of allocations
561    pub total_allocations: usize,
562    /// Total number of deallocations
563    pub total_deallocations: usize,
564    /// Memory fragmentation ratio (0.0-1.0)
565    pub fragmentation_ratio: f64,
566}
567
568/// Performance metrics snapshot
569#[derive(Debug, Clone)]
570pub struct PerformanceMetrics {
571    pub throughput_ops_per_sec: f64,
572    pub cpu_utilization: f64,
573    pub memory_utilization: f64,
574    pub cache_hit_ratio: f64,
575    pub load_balance_factor: f64,
576    pub average_task_time: Duration,
577    pub active_threads: usize,
578    pub completed_tasks: u64,
579    pub failed_tasks: u64,
580}
581
582/// Performance history snapshot
583#[derive(Debug, Clone)]
584pub struct PerformanceSnapshot {
585    pub timestamp: Instant,
586    pub metrics: PerformanceMetrics,
587}
588
589/// Advanced memory manager for large-scale operations
590pub struct MemoryManager {
591    allocated_memory: AtomicUsize,
592    peak_memory: AtomicUsize,
593    memory_pools: RwLock<HashMap<usize, MemoryPool>>,
594    gc_enabled: AtomicBool,
595}
596
597/// Memory pool for efficient allocation
598pub struct MemoryPool {
599    chunksize: usize,
600    available_chunks: Mutex<Vec<*mut u8>>,
601    total_chunks: AtomicUsize,
602}
603
604/// GPU processing context
605pub struct GpuContext {
606    device_id: usize,
607    available_memory: usize,
608    stream_handles: Vec<GpuStream>,
609    unified_memory_enabled: bool,
610}
611
612/// GPU processing stream
613pub struct GpuStream {
614    stream_id: usize,
615    active: AtomicBool,
616    pending_operations: AtomicUsize,
617}
618
619impl<F> AdvancedParallelProcessor<F>
620where
621    F: Float
622        + NumCast
623        + SimdUnifiedOps
624        + Zero
625        + One
626        + PartialOrd
627        + Copy
628        + Send
629        + Sync
630        + 'static
631        + std::fmt::Display
632        + scirs2_core::ndarray::ScalarOperand,
633{
634    /// Create new advanced-parallel processor
635    pub fn new() -> Self {
636        Self::with_config(AdvancedParallelConfig::default())
637    }
638
639    /// Create with custom configuration
640    pub fn with_config(config: AdvancedParallelConfig) -> Self {
641        let performance_monitor = Arc::new(PerformanceMonitor::new());
642        let memory_manager = Arc::new(MemoryManager::new(&config.memory));
643
644        let thread_pool = if config.hardware.cpu_cores > 1 {
645            Some(ThreadPool::new(&config))
646        } else {
647            None
648        };
649
650        let gpu_context = if config.gpu.enable_gpu {
651            GpuContext::new(&config.gpu).ok()
652        } else {
653            None
654        };
655
656        Self {
657            config,
658            thread_pool,
659            performance_monitor,
660            memory_manager,
661            gpu_context: None,
662            _phantom: PhantomData,
663        }
664    }
665
666    /// Process massive dataset using optimal parallel strategy
667    pub fn process_massivedataset<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
668    where
669        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
670        R: Send + Sync + 'static,
671    {
672        // Analyze workload and select optimal strategy
673        let strategy = self.select_optimal_strategy(data)?;
674
675        match strategy {
676            ParallelStrategy::CpuOptimal => self.process_cpu_optimal(data, operation),
677            ParallelStrategy::CpuSimd => self.process_cpu_simd(data, operation),
678            ParallelStrategy::HybridCpuGpu => self.process_hybrid_cpu_gpu(data, operation),
679            ParallelStrategy::GpuPrimary => self.process_gpu_primary(data, operation),
680            ParallelStrategy::Distributed => self.process_distributed(data, operation),
681            ParallelStrategy::Adaptive => self.process_adaptive(data, operation),
682        }
683    }
684
685    /// Select optimal processing strategy based on workload analysis
686    fn select_optimal_strategy(&self, data: &ArrayView2<F>) -> StatsResult<ParallelStrategy> {
687        let datasize = data.len() * std::mem::size_of::<F>();
688        let (rows, cols) = data.dim();
689
690        // Simple heuristics for strategy selection
691        if datasize > self.config.memory.system_ram {
692            // Data larger than RAM - use out-of-core processing
693            Ok(ParallelStrategy::CpuOptimal)
694        } else if self.config.gpu.enable_gpu && datasize > self.config.gpu.transfer_threshold {
695            // Large data with GPU available
696            Ok(ParallelStrategy::HybridCpuGpu)
697        } else if rows * cols > 1_000_000 {
698            // Large computation - use SIMD optimizations
699            Ok(ParallelStrategy::CpuSimd)
700        } else {
701            // Moderate size - use standard CPU parallelization
702            Ok(ParallelStrategy::CpuOptimal)
703        }
704    }
705
706    /// CPU-optimal processing with adaptive thread management
707    fn process_cpu_optimal<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
708    where
709        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
710        R: Send + Sync + 'static,
711    {
712        let (rows, cols) = data.dim();
713        let num_threads = self.config.hardware.cpu_cores;
714        let chunksize = rows.div_ceil(num_threads);
715
716        // Process in parallel chunks
717        let results: Vec<_> = (0..num_threads)
718            .into_par_iter()
719            .map(|thread_id| {
720                let start_row = thread_id * chunksize;
721                let end_row = ((thread_id + 1) * chunksize).min(rows);
722
723                if start_row < rows {
724                    let chunk = data.slice(scirs2_core::ndarray::s![start_row..end_row, ..]);
725                    operation(&chunk)
726                } else {
727                    // Empty chunk - return appropriate default
728                    Err(StatsError::InvalidArgument("Empty chunk".to_string()))
729                }
730            })
731            .filter_map(|result| result.ok())
732            .collect();
733
734        // For simplicity, return first successful result
735        // In practice, would combine results appropriately
736        results.into_iter().next().ok_or_else(|| {
737            StatsError::ComputationError("No successful parallel results".to_string())
738        })
739    }
740
741    /// CPU+SIMD processing with vectorization
742    fn process_cpu_simd<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
743    where
744        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
745        R: Send + Sync + 'static,
746    {
747        // Use SIMD-optimized operations from advanced_simd_comprehensive
748        let _simd_processor =
749            crate::simd_comprehensive::AdvancedComprehensiveSimdProcessor::<F>::new();
750
751        // For now, delegate to standard processing
752        // In practice, would use SIMD-optimized variants
753        operation(data)
754    }
755
756    /// Hybrid CPU+GPU processing
757    fn process_hybrid_cpu_gpu<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
758    where
759        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
760        R: Send + Sync + 'static,
761    {
762        if let Some(_gpu_context) = &self.gpu_context {
763            // Would implement GPU acceleration here
764            // For now, fall back to CPU processing
765            self.process_cpu_optimal(data, operation)
766        } else {
767            self.process_cpu_optimal(data, operation)
768        }
769    }
770
771    /// GPU-primary processing with CPU fallback
772    fn process_gpu_primary<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
773    where
774        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
775        R: Send + Sync + 'static,
776    {
777        // For now, fall back to CPU processing
778        self.process_cpu_optimal(data, operation)
779    }
780
781    /// Distributed processing across multiple machines
782    fn process_distributed<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
783    where
784        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
785        R: Send + Sync + 'static,
786    {
787        // For now, fall back to local processing
788        self.process_cpu_optimal(data, operation)
789    }
790
791    /// Adaptive processing that monitors performance and adjusts strategy
792    fn process_adaptive<T, R>(&self, data: &ArrayView2<F>, operation: T) -> StatsResult<R>
793    where
794        T: Fn(&ArrayView2<F>) -> StatsResult<R> + Send + Sync + Clone + 'static,
795        R: Send + Sync + 'static,
796    {
797        // Start with CPU optimal and monitor performance
798        let start_time = Instant::now();
799        let result = self.process_cpu_optimal(data, operation)?;
800        let duration = start_time.elapsed();
801
802        // Update performance metrics
803        self.performance_monitor
804            .update_metrics(duration, data.len());
805
806        Ok(result)
807    }
808
809    /// Get current performance metrics
810    pub fn get_performance_metrics(&self) -> PerformanceMetrics {
811        self.performance_monitor.get_current_metrics()
812    }
813
814    /// Get configuration
815    pub fn get_config(&self) -> &AdvancedParallelConfig {
816        &self.config
817    }
818
819    /// Update configuration
820    pub fn update_config(&mut self, config: AdvancedParallelConfig) {
821        self.config = config;
822    }
823}
824
825impl PerformanceMonitor {
826    fn new() -> Self {
827        Self {
828            metrics: RwLock::new(PerformanceMetrics::default()),
829            history: RwLock::new(VecDeque::new()),
830            monitoring_active: AtomicBool::new(true),
831        }
832    }
833
834    fn update_metrics(&self, execution_time: Duration, datasize: usize) {
835        if let Ok(mut metrics) = self.metrics.write() {
836            metrics.completed_tasks += 1;
837            metrics.average_task_time = execution_time;
838
839            // Calculate throughput
840            let ops_per_sec = if execution_time.as_secs_f64() > 0.0 {
841                datasize as f64 / execution_time.as_secs_f64()
842            } else {
843                0.0
844            };
845            metrics.throughput_ops_per_sec = ops_per_sec;
846        }
847    }
848
849    fn get_current_metrics(&self) -> PerformanceMetrics {
850        self.metrics.read().unwrap().clone()
851    }
852}
853
854impl Default for PerformanceMetrics {
855    fn default() -> Self {
856        Self {
857            throughput_ops_per_sec: 0.0,
858            cpu_utilization: 0.0,
859            memory_utilization: 0.0,
860            cache_hit_ratio: 0.0,
861            load_balance_factor: 1.0,
862            average_task_time: Duration::from_secs(0),
863            active_threads: 0,
864            completed_tasks: 0,
865            failed_tasks: 0,
866        }
867    }
868}
869
870impl<F> Default for AdvancedParallelProcessor<F>
871where
872    F: Float
873        + NumCast
874        + SimdUnifiedOps
875        + Zero
876        + One
877        + PartialOrd
878        + Copy
879        + Send
880        + Sync
881        + 'static
882        + std::fmt::Display
883        + scirs2_core::ndarray::ScalarOperand,
884{
885    fn default() -> Self {
886        Self::new()
887    }
888}
889
890/// Convenient type aliases
891pub type F64AdvancedParallelProcessor = AdvancedParallelProcessor<f64>;
892pub type F32AdvancedParallelProcessor = AdvancedParallelProcessor<f32>;
893
894/// Factory functions
895#[allow(dead_code)]
896pub fn create_advanced_parallel_processor<F>() -> AdvancedParallelProcessor<F>
897where
898    F: Float
899        + NumCast
900        + SimdUnifiedOps
901        + Zero
902        + One
903        + PartialOrd
904        + Copy
905        + Send
906        + Sync
907        + 'static
908        + std::fmt::Display
909        + scirs2_core::ndarray::ScalarOperand,
910{
911    AdvancedParallelProcessor::new()
912}
913
914#[allow(dead_code)]
915pub fn create_optimized_parallel_processor<F>(
916    config: AdvancedParallelConfig,
917) -> AdvancedParallelProcessor<F>
918where
919    F: Float
920        + NumCast
921        + SimdUnifiedOps
922        + Zero
923        + One
924        + PartialOrd
925        + Copy
926        + Send
927        + Sync
928        + 'static
929        + std::fmt::Display
930        + scirs2_core::ndarray::ScalarOperand,
931{
932    AdvancedParallelProcessor::with_config(config)
933}
934
935// Unsafe implementations for raw memory operations
936unsafe impl Send for MemoryPool {}
937unsafe impl Sync for MemoryPool {}
938
939#[cfg(test)]
940mod tests {
941    use super::*;
942    use scirs2_core::ndarray::Array2;
943
944    #[test]
945    fn test_advanced_parallel_config_default() {
946        let config = AdvancedParallelConfig::default();
947        assert!(config.hardware.cpu_cores > 0);
948        assert!(config.memory.system_ram > 0);
949    }
950
951    #[test]
952    fn test_memory_bandwidth_detection() {
953        let bandwidth = AdvancedParallelConfig::detect_memory_bandwidth();
954        assert!(bandwidth > 0.0);
955        assert!(bandwidth < 1000.0); // Reasonable upper bound
956    }
957
958    #[test]
959    fn test_cachesize_detection() {
960        let cachesizes = AdvancedParallelConfig::detect_cachesizes();
961        assert!(cachesizes.l1data > 0);
962        assert!(cachesizes.l2_unified > cachesizes.l1data);
963        assert!(cachesizes.l3_shared > cachesizes.l2_unified);
964    }
965
966    #[test]
967    fn test_numa_detection() {
968        let numa_nodes = AdvancedParallelConfig::detect_numa_nodes();
969        assert!(numa_nodes > 0);
970        assert!(numa_nodes <= 16); // Reasonable upper bound
971    }
972
973    #[test]
974    fn test_advanced_parallel_processor_creation() {
975        let processor = AdvancedParallelProcessor::<f64>::new();
976        assert!(processor.config.hardware.cpu_cores > 0);
977    }
978
979    #[test]
980    #[ignore = "timeout"]
981    fn test_strategy_selection() {
982        let processor = AdvancedParallelProcessor::<f64>::new();
983        let smalldata = Array2::<f64>::zeros((10, 10));
984        let strategy = processor
985            .select_optimal_strategy(&smalldata.view())
986            .unwrap();
987
988        // Should select CPU optimal for small data
989        assert!(matches!(strategy, ParallelStrategy::CpuOptimal));
990    }
991
992    #[test]
993    #[ignore = "timeout"]
994    fn test_performance_monitor() {
995        let monitor = PerformanceMonitor::new();
996        let metrics = monitor.get_current_metrics();
997        assert_eq!(metrics.completed_tasks, 0);
998    }
999
1000    #[test]
1001    fn test_memory_manager() {
1002        let config = MemoryConfig::default();
1003        let manager = MemoryManager::new(&config);
1004        assert_eq!(manager.allocated_memory.load(Ordering::Relaxed), 0);
1005    }
1006}
1007
1008impl MemoryManager {
1009    fn new(config: &MemoryConfig) -> Self {
1010        Self {
1011            allocated_memory: AtomicUsize::new(0),
1012            peak_memory: AtomicUsize::new(0),
1013            memory_pools: RwLock::new(HashMap::new()),
1014            gc_enabled: AtomicBool::new(config.enable_gc),
1015        }
1016    }
1017
1018    fn get_usage_stats(&self) -> MemoryUsageStats {
1019        MemoryUsageStats {
1020            current_allocated: self.allocated_memory.load(Ordering::Acquire),
1021            peak_allocated: self.peak_memory.load(Ordering::Acquire),
1022            total_allocations: 0,     // Would track actual allocations
1023            total_deallocations: 0,   // Would track actual deallocations
1024            fragmentation_ratio: 0.0, // Would calculate actual fragmentation
1025        }
1026    }
1027}
1028
1029impl ThreadPool {
1030    fn new(config: &AdvancedParallelConfig) -> Self {
1031        let num_workers = config.hardware.cpu_cores;
1032        let work_queue = Arc::new(Mutex::new(VecDeque::new()));
1033        let shutdown = Arc::new(AtomicBool::new(false));
1034        let active_workers = Arc::new(AtomicUsize::new(0));
1035
1036        let workers = (0..num_workers)
1037            .map(|id| Worker::new(id, work_queue.clone(), shutdown.clone()))
1038            .collect();
1039
1040        Self {
1041            workers,
1042            work_queue,
1043            shutdown,
1044            active_workers,
1045        }
1046    }
1047}
1048
1049impl Worker {
1050    fn new(
1051        _id: usize,
1052        _work_queue: Arc<Mutex<VecDeque<Task>>>,
1053        _shutdown: Arc<AtomicBool>,
1054    ) -> Self {
1055        Self {
1056            id: _id,
1057            thread: None, // Would spawn actual worker thread
1058            local_queue: VecDeque::new(),
1059            numa_node: None,
1060        }
1061    }
1062}
1063
1064impl GpuContext {
1065    fn new(config: &GpuConfig) -> Result<Self, String> {
1066        // Simplified GPU initialization
1067        Ok(Self {
1068            device_id: config.preferred_device.unwrap_or(0),
1069            available_memory: config.gpu_memory_limit.unwrap_or(1024 * 1024 * 1024),
1070            stream_handles: Vec::new(),
1071            unified_memory_enabled: config.enable_unified_memory,
1072        })
1073    }
1074}