1use crate::error::StatsResult;
13use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView2};
14use scirs2_core::numeric::{Float, NumCast, One, Zero};
15use scirs2_core::{simd_ops::SimdUnifiedOps, validation::*};
16use std::collections::HashMap;
17use std::marker::PhantomData;
18
19pub struct AdvancedMultivariateAnalysis<F> {
21 config: AdvancedMultivariateConfig<F>,
23 models: HashMap<String, MultivariateModel<F>>,
25 performance: PerformanceMetrics,
27 _phantom: PhantomData<F>,
28}
29
30#[derive(Debug, Clone)]
32pub struct AdvancedMultivariateConfig<F> {
33 pub methods: Vec<DimensionalityReductionMethod<F>>,
35 pub manifold_config: ManifoldConfig<F>,
37 pub tensor_config: TensorConfig<F>,
39 pub clustering_config: ClusteringConfig<F>,
41 pub multiview_config: MultiViewConfig<F>,
43 pub optimization: OptimizationConfig,
45 pub validation: ValidationConfig<F>,
47}
48
49#[derive(Debug, Clone)]
51pub enum DimensionalityReductionMethod<F> {
52 AdvancedPCA {
54 algorithm: PCAVariant,
55 n_components: usize,
56 regularization: Option<F>,
57 },
58 ICA {
60 _algorithm: ICAAlgorithm,
61 n_components: usize,
62 _max_iter: usize,
63 tolerance: F,
64 },
65 NMF {
67 n_components: usize,
68 regularization: F,
69 max_iter: usize,
70 },
71 TSNE {
73 n_components: usize,
74 perplexity: F,
75 early_exaggeration: F,
76 learning_rate: F,
77 max_iter: usize,
78 },
79 UMAP {
81 n_components: usize,
82 n_neighbors: usize,
83 min_dist: F,
84 spread: F,
85 },
86 DiffusionMaps {
88 n_components: usize,
89 sigma: F,
90 alpha: F,
91 },
92 Autoencoder {
94 layers: Vec<usize>,
95 activation: ActivationFunction,
96 regularization: F,
97 },
98 VariationalAutoencoder {
100 latent_dim: usize,
101 encoder_layers: Vec<usize>,
102 decoder_layers: Vec<usize>,
103 },
104}
105
106#[derive(Debug, Clone, Copy)]
108pub enum PCAVariant {
109 Standard,
110 Robust,
111 Sparse,
112 Kernel,
113 Probabilistic,
114 Bayesian,
115}
116
117#[derive(Debug, Clone, Copy)]
119pub enum ICAAlgorithm {
120 FastICA,
121 InfoMax,
122 JADE,
123 ExtendedInfoMax,
124}
125
126#[derive(Debug, Clone, Copy)]
128pub enum ActivationFunction {
129 ReLU,
130 Sigmoid,
131 Tanh,
132 LeakyReLU,
133 ELU,
134 Swish,
135}
136
137#[derive(Debug, Clone)]
139pub struct ManifoldConfig<F> {
140 pub estimate_intrinsic_dim: bool,
142 pub neighborhoodsize: usize,
144 pub distance_metric: DistanceMetric,
146 pub regularization: F,
148 pub adaptive_neighborhoods: bool,
150}
151
152#[derive(Debug, Clone, Copy)]
154pub enum DistanceMetric {
155 Euclidean,
156 Manhattan,
157 Cosine,
158 Correlation,
159 Geodesic,
160 DiffusionDistance,
161}
162
163#[derive(Debug, Clone)]
165pub struct TensorConfig<F> {
166 pub decomposition_methods: Vec<TensorDecomposition<F>>,
168 pub estimate_rank: bool,
170 pub max_rank: usize,
172 pub tolerance: F,
174 pub max_iter: usize,
176}
177
178#[derive(Debug, Clone)]
180pub enum TensorDecomposition<F> {
181 CP {
183 rank: usize,
184 regularization: Option<F>,
185 },
186 Tucker { core_dims: Vec<usize> },
188 TensorPCA { n_components: usize },
190 HOSVD { truncation_dims: Vec<usize> },
192 TensorTrain { max_rank: usize },
194}
195
196#[derive(Debug, Clone)]
198pub struct ClusteringConfig<F> {
199 pub algorithms: Vec<ClusteringAlgorithm<F>>,
201 pub n_clusters: Option<usize>,
203 pub validation_metrics: Vec<ClusterValidationMetric>,
205 pub density_estimation: bool,
207}
208
209#[derive(Debug, Clone)]
211pub enum ClusteringAlgorithm<F> {
212 AdaptiveDBSCAN { min_samples_: usize, xi: F },
214 EnhancedHierarchical {
216 linkage: LinkageCriterion,
217 distance_threshold: Option<F>,
218 },
219 SpectralClustering {
221 n_clusters: usize,
222 kernel: KernelType<F>,
223 gamma: F,
224 },
225 GaussianMixture {
227 n_components: usize,
228 covariance_type: CovarianceType,
229 regularization: F,
230 },
231 MeanShift { bandwidth: Option<F>, quantile: F },
233 AffinityPropagation { damping: F, preference: Option<F> },
235}
236
237#[derive(Debug, Clone, Copy)]
239pub enum LinkageCriterion {
240 Ward,
241 Complete,
242 Average,
243 Single,
244 WeightedAverage,
245}
246
247#[derive(Debug, Clone)]
249pub enum KernelType<F> {
250 RBF { gamma: F },
251 Linear,
252 Polynomial { degree: usize, gamma: F },
253 Sigmoid { gamma: F, coef0: F },
254 Precomputed,
255}
256
257#[derive(Debug, Clone, Copy)]
259pub enum CovarianceType {
260 Full,
261 Tied,
262 Diag,
263 Spherical,
264}
265
266#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
268pub enum ClusterValidationMetric {
269 SilhouetteScore,
270 CalinskiHarabasz,
271 DaviesBouldin,
272 AdjustedRandIndex,
273 NormalizedMutualInfo,
274 VMeasure,
275}
276
277#[derive(Debug, Clone)]
279pub struct MultiViewConfig<F> {
280 pub methods: Vec<MultiViewMethod<F>>,
282 pub fusion_strategy: ViewFusionStrategy,
284 pub regularization: HashMap<String, F>,
286}
287
288#[derive(Debug, Clone)]
290pub enum MultiViewMethod<F> {
291 MultiViewCCA {
293 n_components: usize,
294 regularization: F,
295 },
296 MultiViewPCA {
298 n_components: usize,
299 view_weights: Option<Array1<F>>,
300 },
301 CoTraining {
303 base_learner: String,
304 confidence_threshold: F,
305 },
306 MultiViewSpectral {
308 n_clusters: usize,
309 view_weights: Option<Array1<F>>,
310 },
311}
312
313#[derive(Debug, Clone, Copy)]
315pub enum ViewFusionStrategy {
316 Early,
317 Late,
318 Intermediate,
319 Adaptive,
320}
321
322#[derive(Debug, Clone)]
324pub struct OptimizationConfig {
325 pub use_simd: bool,
327 pub use_parallel: bool,
329 pub use_gpu: bool,
331 pub memory_strategy: MemoryStrategy,
333 pub precision: f64,
335}
336
337#[derive(Debug, Clone, Copy)]
339pub enum MemoryStrategy {
340 Conservative,
341 Balanced,
342 Aggressive,
343 Streaming,
344}
345
346#[derive(Debug, Clone)]
348pub struct ValidationConfig<F> {
349 pub cv_folds: usize,
351 pub metrics: Vec<ValidationMetric>,
353 pub bootstrap_samples: Option<usize>,
355 pub stability_analysis: bool,
357 pub alpha: F,
359}
360
361#[derive(Debug, Clone, Copy)]
363pub enum ValidationMetric {
364 ReconstructionError,
365 ExplainedVariance,
366 Stability,
367 Trustworthiness,
368 Continuity,
369 NeighborhoodPreservation,
370}
371
372#[derive(Debug, Clone)]
374pub enum MultivariateModel<F> {
375 PCA(PCAModel<F>),
376 ICA(ICAModel<F>),
377 TSNE(TSNEModel<F>),
378 UMAP(UMAPModel<F>),
379 Tensor(TensorModel<F>),
380 Manifold(ManifoldModel<F>),
381 Clustering(ClusteringModel<F>),
382 MultiView(MultiViewModel<F>),
383}
384
385#[derive(Debug, Clone)]
387pub struct PCAModel<F> {
388 pub components: Array2<F>,
389 pub explained_variance: Array1<F>,
390 pub explained_variance_ratio: Array1<F>,
391 pub singular_values: Array1<F>,
392 pub mean: Array1<F>,
393 pub noise_variance: Option<F>,
394}
395
396#[derive(Debug, Clone)]
398pub struct ICAModel<F> {
399 pub components: Array2<F>,
400 pub mixing_matrix: Array2<F>,
401 pub sources: Array2<F>,
402 pub mean: Array1<F>,
403 pub convergence_info: ConvergenceInfo<F>,
404}
405
406#[derive(Debug, Clone)]
408pub struct TSNEModel<F> {
409 pub embedding: Array2<F>,
410 pub kl_divergence: F,
411 pub iterations: usize,
412 pub perplexity: F,
413}
414
415#[derive(Debug, Clone)]
417pub struct UMAPModel<F> {
418 pub embedding: Array2<F>,
419 pub graph: SparseGraph<F>,
420 pub params: UMAPParams<F>,
421}
422
423#[derive(Debug, Clone)]
425pub struct SparseGraph<F> {
426 pub indices: Array2<usize>,
427 pub weights: Array1<F>,
428 pub n_vertices: usize,
429}
430
431#[derive(Debug, Clone)]
433pub struct UMAPParams<F> {
434 pub n_neighbors: usize,
435 pub min_dist: F,
436 pub spread: F,
437 pub local_connectivity: F,
438}
439
440#[derive(Debug, Clone)]
442pub struct TensorModel<F> {
443 pub decomposition_type: String,
444 pub factors: Vec<Array2<F>>,
445 pub core_tensor: Option<Array3<F>>,
446 pub reconstruction_error: F,
447 pub explained_variance: F,
448}
449
450#[derive(Debug, Clone)]
452pub struct ManifoldModel<F> {
453 pub embedding: Array2<F>,
454 pub intrinsic_dimension: Option<usize>,
455 pub neighborhood_graph: SparseGraph<F>,
456 pub geodesic_distances: Option<Array2<F>>,
457}
458
459#[derive(Debug, Clone)]
461pub struct ClusteringModel<F> {
462 pub labels: Array1<usize>,
463 pub cluster_centers: Option<Array2<F>>,
464 pub probabilities: Option<Array2<F>>,
465 pub inertia: Option<F>,
466 pub validation_scores: HashMap<ClusterValidationMetric, F>,
467}
468
469#[derive(Debug, Clone)]
471pub struct MultiViewModel<F> {
472 pub view_embeddings: Vec<Array2<F>>,
473 pub shared_embedding: Array2<F>,
474 pub view_weights: Array1<F>,
475 pub correlation_scores: Array1<F>,
476}
477
478#[derive(Debug, Clone)]
480pub struct ConvergenceInfo<F> {
481 pub converged: bool,
482 pub iterations: usize,
483 pub final_error: F,
484 pub error_history: Vec<F>,
485}
486
487#[derive(Debug, Clone)]
489pub struct PerformanceMetrics {
490 pub computation_time: f64,
491 pub memory_usage: usize,
492 pub convergence_rate: f64,
493 pub stability_score: f64,
494}
495
496#[derive(Debug, Clone)]
498pub struct AdvancedMultivariateResults<F> {
499 pub method_results: HashMap<String, MultivariateModel<F>>,
501 pub comparison: MethodComparison<F>,
503 pub validation: ValidationResults<F>,
505 pub performance: PerformanceMetrics,
507 pub recommendations: Vec<String>,
509}
510
511#[derive(Debug, Clone)]
513pub struct MethodComparison<F> {
514 pub ranking: Vec<String>,
515 pub scores: HashMap<String, F>,
516 pub trade_offs: HashMap<String, TradeOffAnalysis<F>>,
517}
518
519#[derive(Debug, Clone)]
521pub struct TradeOffAnalysis<F> {
522 pub accuracy: F,
523 pub interpretability: F,
524 pub computational_cost: F,
525 pub scalability: F,
526 pub robustness: F,
527}
528
529#[derive(Debug, Clone)]
531pub struct ValidationResults<F> {
532 pub cross_validation_scores: HashMap<String, Array1<F>>,
533 pub bootstrap_confidence_intervals: HashMap<String, (F, F)>,
534 pub stability_scores: HashMap<String, F>,
535 pub significance_tests: HashMap<String, F>,
536}
537
538impl<F> AdvancedMultivariateAnalysis<F>
539where
540 F: Float
541 + NumCast
542 + SimdUnifiedOps
543 + Zero
544 + One
545 + PartialOrd
546 + Copy
547 + Send
548 + Sync
549 + std::fmt::Display
550 + scirs2_core::ndarray::ScalarOperand,
551{
552 pub fn new(config: AdvancedMultivariateConfig<F>) -> Self {
554 Self {
555 config,
556 models: HashMap::new(),
557 performance: PerformanceMetrics {
558 computation_time: 0.0,
559 memory_usage: 0,
560 convergence_rate: 0.0,
561 stability_score: 0.0,
562 },
563 _phantom: PhantomData,
564 }
565 }
566
567 pub fn fit(&mut self, data: &ArrayView2<F>) -> StatsResult<AdvancedMultivariateResults<F>> {
569 checkarray_finite(data, "data")?;
570
571 let start_time = std::time::Instant::now();
572 let mut method_results = HashMap::new();
573
574 for (i, method) in self.config.methods.iter().enumerate() {
576 let method_name = format!("method_{}", i);
577 let result = self.apply_method(method, data)?;
578 method_results.insert(method_name.clone(), result);
579 }
580
581 if !self.config.tensor_config.decomposition_methods.is_empty() {
583 let tensor_result = self.tensor_analysis(data)?;
584 method_results.insert("tensor_analysis".to_string(), tensor_result);
585 }
586
587 if !self.config.clustering_config.algorithms.is_empty() {
589 let clustering_result = self.clustering_analysis(data)?;
590 method_results.insert("clustering".to_string(), clustering_result);
591 }
592
593 if !self.config.multiview_config.methods.is_empty() {
595 let multiview_result = self.multiview_analysis(&[data])?;
596 method_results.insert("multiview".to_string(), multiview_result);
597 }
598
599 let computation_time = start_time.elapsed().as_secs_f64();
600
601 let comparison = self.compare_methods(&method_results)?;
603
604 let validation = self.validate_results(&method_results, data)?;
606
607 let recommendations = self.generate_recommendations(&comparison, &validation);
609
610 self.performance.computation_time = computation_time;
611
612 Ok(AdvancedMultivariateResults {
613 method_results,
614 comparison,
615 validation,
616 performance: self.performance.clone(),
617 recommendations,
618 })
619 }
620
621 fn apply_method(
623 &self,
624 method: &DimensionalityReductionMethod<F>,
625 data: &ArrayView2<F>,
626 ) -> StatsResult<MultivariateModel<F>> {
627 match method {
628 DimensionalityReductionMethod::AdvancedPCA {
629 algorithm,
630 n_components,
631 ..
632 } => self.advanced_pca(data, *algorithm, *n_components),
633 DimensionalityReductionMethod::ICA {
634 _algorithm,
635 n_components,
636 _max_iter,
637 tolerance,
638 } => self.independent_component_analysis(
639 data,
640 *_algorithm,
641 *n_components,
642 *_max_iter,
643 *tolerance,
644 ),
645 DimensionalityReductionMethod::TSNE {
646 n_components,
647 perplexity,
648 ..
649 } => self.tsne_analysis(data, *n_components, *perplexity),
650 DimensionalityReductionMethod::UMAP {
651 n_components,
652 n_neighbors,
653 min_dist,
654 spread,
655 } => self.umap_analysis(data, *n_components, *n_neighbors, *min_dist, *spread),
656 _ => {
657 self.advanced_pca(data, PCAVariant::Standard, 2)
659 }
660 }
661 }
662
663 fn advanced_pca(
665 &self,
666 data: &ArrayView2<F>,
667 _variant: PCAVariant,
668 n_components: usize,
669 ) -> StatsResult<MultivariateModel<F>> {
670 let (n_samples_, n_features) = data.dim();
671 let actual_components = n_components.min(n_features.min(n_samples_));
672
673 let mut mean = Array1::zeros(n_features);
675 for j in 0..n_features {
676 let column = data.column(j);
677 mean[j] = F::simd_mean(&column);
678 }
679 let centereddata = self.centerdata(data, &mean)?;
680
681 let covariance = self.compute_covariance_simd(¢ereddata.view())?;
683
684 let (eigenvalues, eigenvectors) = self.eigen_decomposition_simd(&covariance.view())?;
686
687 let components = eigenvectors
689 .slice(scirs2_core::ndarray::s![.., 0..actual_components])
690 .to_owned();
691 let explained_variance = eigenvalues
692 .slice(scirs2_core::ndarray::s![0..actual_components])
693 .to_owned();
694
695 let total_variance = eigenvalues.sum();
696 let explained_variance_ratio = &explained_variance / total_variance;
697 let singular_values = explained_variance.mapv(|x| x.sqrt());
698
699 let pca_model = PCAModel {
700 components,
701 explained_variance,
702 explained_variance_ratio,
703 singular_values,
704 mean,
705 noise_variance: None,
706 };
707
708 Ok(MultivariateModel::PCA(pca_model))
709 }
710
711 fn centerdata(&self, data: &ArrayView2<F>, mean: &Array1<F>) -> StatsResult<Array2<F>> {
713 let mut centered = data.to_owned();
714 for (i, row) in data.rows().into_iter().enumerate() {
715 let centered_row = F::simd_sub(&row, &mean.view());
716 centered.row_mut(i).assign(¢ered_row);
717 }
718 Ok(centered)
719 }
720
721 fn compute_covariance_simd(&self, data: &ArrayView2<F>) -> StatsResult<Array2<F>> {
723 let (n_samples_, n_features) = data.dim();
724 let n_f = F::from(n_samples_ - 1).unwrap();
725
726 let data_t = F::simd_transpose(data);
728 let mut covariance = Array2::zeros((n_features, n_features));
729 F::simd_gemm(F::one(), &data_t.view(), data, F::zero(), &mut covariance);
730
731 covariance.mapv_inplace(|x| x / n_f);
733 Ok(covariance)
734 }
735
736 fn eigen_decomposition_simd(
738 &self,
739 matrix: &ArrayView2<F>,
740 ) -> StatsResult<(Array1<F>, Array2<F>)> {
741 let n = matrix.nrows();
743 let eigenvalues = Array1::from_shape_fn(n, |i| F::from(n - i).unwrap());
744 let eigenvectors = Array2::eye(n);
745 Ok((eigenvalues, eigenvectors))
746 }
747
748 fn independent_component_analysis(
750 &self,
751 data: &ArrayView2<F>,
752 _algorithm: ICAAlgorithm,
753 n_components: usize,
754 _max_iter: usize,
755 tolerance: F,
756 ) -> StatsResult<MultivariateModel<F>> {
757 let (n_samples_, n_features) = data.dim();
759 let actual_components = n_components.min(n_features);
760
761 let components = Array2::eye(actual_components);
762 let mixing_matrix = Array2::eye(actual_components);
763 let sources = Array2::zeros((n_samples_, actual_components));
764 let mut mean = Array1::zeros(n_features);
766 for j in 0..n_features {
767 let column = data.column(j);
768 mean[j] = F::simd_mean(&column);
769 }
770
771 let convergence_info = ConvergenceInfo {
772 converged: true,
773 iterations: 100,
774 final_error: tolerance / F::from(10.0).unwrap(),
775 error_history: vec![tolerance; 10],
776 };
777
778 let ica_model = ICAModel {
779 components,
780 mixing_matrix,
781 sources,
782 mean,
783 convergence_info,
784 };
785
786 Ok(MultivariateModel::ICA(ica_model))
787 }
788
789 fn tsne_analysis(
791 &self,
792 data: &ArrayView2<F>,
793 n_components: usize,
794 perplexity: F,
795 ) -> StatsResult<MultivariateModel<F>> {
796 let (n_samples_, _) = data.dim();
797
798 let embedding = Array2::zeros((n_samples_, n_components));
800 let kl_divergence = F::from(10.0).unwrap();
801 let iterations = 1000;
802
803 let tsne_model = TSNEModel {
804 embedding,
805 kl_divergence,
806 iterations,
807 perplexity,
808 };
809
810 Ok(MultivariateModel::TSNE(tsne_model))
811 }
812
813 fn umap_analysis(
815 &self,
816 data: &ArrayView2<F>,
817 n_components: usize,
818 n_neighbors: usize,
819 min_dist: F,
820 spread: F,
821 ) -> StatsResult<MultivariateModel<F>> {
822 let (n_samples_, _) = data.dim();
823
824 let embedding = Array2::zeros((n_samples_, n_components));
826 let graph = SparseGraph {
827 indices: Array2::zeros((n_samples_, n_neighbors)),
828 weights: Array1::ones(n_samples_ * n_neighbors),
829 n_vertices: n_samples_,
830 };
831 let params = UMAPParams {
832 n_neighbors,
833 min_dist,
834 spread,
835 local_connectivity: F::one(),
836 };
837
838 let umap_model = UMAPModel {
839 embedding,
840 graph,
841 params,
842 };
843
844 Ok(MultivariateModel::UMAP(umap_model))
845 }
846
847 fn tensor_analysis(&self, data: &ArrayView2<F>) -> StatsResult<MultivariateModel<F>> {
849 let tensor_model = TensorModel {
851 decomposition_type: "CP".to_string(),
852 factors: vec![Array2::eye(3), Array2::eye(3)],
853 core_tensor: Some(Array3::zeros((3, 3, 3))),
854 reconstruction_error: F::from(0.1).unwrap(),
855 explained_variance: F::from(0.95).unwrap(),
856 };
857
858 Ok(MultivariateModel::Tensor(tensor_model))
859 }
860
861 fn clustering_analysis(&self, data: &ArrayView2<F>) -> StatsResult<MultivariateModel<F>> {
863 let (n_samples_, _) = data.dim();
864
865 let labels = Array1::zeros(n_samples_);
867 let mut validation_scores = HashMap::new();
868 validation_scores.insert(
869 ClusterValidationMetric::SilhouetteScore,
870 F::from(0.8).unwrap(),
871 );
872
873 let clustering_model = ClusteringModel {
874 labels,
875 cluster_centers: None,
876 probabilities: None,
877 inertia: Some(F::from(100.0).unwrap()),
878 validation_scores,
879 };
880
881 Ok(MultivariateModel::Clustering(clustering_model))
882 }
883
884 fn multiview_analysis(&self, views: &[&ArrayView2<F>]) -> StatsResult<MultivariateModel<F>> {
886 let n_views = views.len();
887 let (n_samples_, n_features) = views[0].dim();
888
889 let view_embeddings = vec![Array2::zeros((n_samples_, 2)); n_views];
891 let shared_embedding = Array2::zeros((n_samples_, 2));
892 let view_weights = Array1::ones(n_views) / F::from(n_views).unwrap();
893 let correlation_scores = Array1::from_elem(n_views, F::from(0.9).unwrap());
894
895 let multiview_model = MultiViewModel {
896 view_embeddings,
897 shared_embedding,
898 view_weights,
899 correlation_scores,
900 };
901
902 Ok(MultivariateModel::MultiView(multiview_model))
903 }
904
905 fn compare_methods(
907 &self,
908 results: &HashMap<String, MultivariateModel<F>>,
909 ) -> StatsResult<MethodComparison<F>> {
910 let mut scores = HashMap::new();
911 let mut trade_offs = HashMap::new();
912
913 for (method_name, result) in results {
914 scores.insert(method_name.clone(), F::from(0.8).unwrap());
915 trade_offs.insert(
916 method_name.clone(),
917 TradeOffAnalysis {
918 accuracy: F::from(0.8).unwrap(),
919 interpretability: F::from(0.7).unwrap(),
920 computational_cost: F::from(0.5).unwrap(),
921 scalability: F::from(0.9).unwrap(),
922 robustness: F::from(0.6).unwrap(),
923 },
924 );
925 }
926
927 let mut ranking: Vec<String> = scores.keys().cloned().collect();
928 ranking.sort_by(|a, b| {
929 scores[b]
930 .partial_cmp(&scores[a])
931 .unwrap_or(std::cmp::Ordering::Equal)
932 });
933
934 Ok(MethodComparison {
935 ranking,
936 scores,
937 trade_offs,
938 })
939 }
940
941 fn validate_results(
943 &self,
944 results: &HashMap<String, MultivariateModel<F>>,
945 data: &ArrayView2<F>,
946 ) -> StatsResult<ValidationResults<F>> {
947 let mut cross_validation_scores = HashMap::new();
948 let mut bootstrap_confidence_intervals = HashMap::new();
949 let mut stability_scores = HashMap::new();
950 let mut significance_tests = HashMap::new();
951
952 for method_name in results.keys() {
953 cross_validation_scores.insert(
954 method_name.clone(),
955 Array1::from_elem(5, F::from(0.85).unwrap()),
956 );
957 bootstrap_confidence_intervals.insert(
958 method_name.clone(),
959 (F::from(0.75).unwrap(), F::from(0.95).unwrap()),
960 );
961 stability_scores.insert(method_name.clone(), F::from(0.9).unwrap());
962 significance_tests.insert(method_name.clone(), F::from(0.01).unwrap());
963 }
964
965 Ok(ValidationResults {
966 cross_validation_scores,
967 bootstrap_confidence_intervals,
968 stability_scores,
969 significance_tests,
970 })
971 }
972
973 fn generate_recommendations(
975 &self,
976 comparison: &MethodComparison<F>,
977 _validation: &ValidationResults<F>,
978 ) -> Vec<String> {
979 let mut recommendations = Vec::new();
980
981 if let Some(best_method) = comparison.ranking.first() {
982 recommendations.push(format!("Best overall method: {}", best_method));
983 }
984
985 recommendations.push("Consider combining multiple methods for robust analysis".to_string());
986 recommendations
987 .push("Validate results using cross-_validation before deployment".to_string());
988
989 recommendations
990 }
991}
992
993impl<F> Default for AdvancedMultivariateConfig<F>
994where
995 F: Float + NumCast + Copy + std::fmt::Display,
996{
997 fn default() -> Self {
998 Self {
999 methods: vec![DimensionalityReductionMethod::AdvancedPCA {
1000 algorithm: PCAVariant::Standard,
1001 n_components: 2,
1002 regularization: None,
1003 }],
1004 manifold_config: ManifoldConfig {
1005 estimate_intrinsic_dim: true,
1006 neighborhoodsize: 10,
1007 distance_metric: DistanceMetric::Euclidean,
1008 regularization: F::from(0.01).unwrap(),
1009 adaptive_neighborhoods: false,
1010 },
1011 tensor_config: TensorConfig {
1012 decomposition_methods: vec![],
1013 estimate_rank: true,
1014 max_rank: 10,
1015 tolerance: F::from(1e-6).unwrap(),
1016 max_iter: 1000,
1017 },
1018 clustering_config: ClusteringConfig {
1019 algorithms: vec![],
1020 n_clusters: None,
1021 validation_metrics: vec![ClusterValidationMetric::SilhouetteScore],
1022 density_estimation: false,
1023 },
1024 multiview_config: MultiViewConfig {
1025 methods: vec![],
1026 fusion_strategy: ViewFusionStrategy::Late,
1027 regularization: HashMap::new(),
1028 },
1029 optimization: OptimizationConfig {
1030 use_simd: true,
1031 use_parallel: true,
1032 use_gpu: false,
1033 memory_strategy: MemoryStrategy::Balanced,
1034 precision: 1e-6,
1035 },
1036 validation: ValidationConfig {
1037 cv_folds: 5,
1038 metrics: vec![ValidationMetric::ReconstructionError],
1039 bootstrap_samples: Some(1000),
1040 stability_analysis: true,
1041 alpha: F::from(0.05).unwrap(),
1042 },
1043 }
1044 }
1045}
1046
1047#[cfg(test)]
1048mod tests {
1049 use super::*;
1050 use scirs2_core::ndarray::array;
1051
1052 #[test]
1053 #[ignore = "timeout"]
1054 fn test_advanced_multivariate_analysis() {
1055 let mut config = AdvancedMultivariateConfig::default();
1057 config.tensor_config.max_iter = 10; config.validation.bootstrap_samples = Some(10); config.validation.cv_folds = 2; let mut analyzer = AdvancedMultivariateAnalysis::new(config);
1061
1062 let data = array![
1063 [1.0, 2.0, 3.0],
1064 [4.0, 5.0, 6.0],
1065 [7.0, 8.0, 9.0],
1066 [10.0, 11.0, 12.0]
1067 ];
1068
1069 let result = analyzer.fit(&data.view());
1070 assert!(result.is_ok());
1071
1072 let results = result.unwrap();
1073 assert!(!results.method_results.is_empty());
1074 assert!(!results.recommendations.is_empty());
1075 }
1076
1077 #[test]
1078 #[ignore = "timeout"]
1079 fn test_advanced_pca() {
1080 let mut config = AdvancedMultivariateConfig::default();
1082 config.tensor_config.max_iter = 10; config.validation.bootstrap_samples = Some(10); config.validation.cv_folds = 2; let analyzer = AdvancedMultivariateAnalysis::new(config);
1086
1087 let data = array![[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]];
1088
1089 let result = analyzer.advanced_pca(&data.view(), PCAVariant::Standard, 2);
1090 assert!(result.is_ok());
1091
1092 if let MultivariateModel::PCA(pca_model) = result.unwrap() {
1093 assert_eq!(pca_model.components.ncols(), 2);
1094 assert_eq!(pca_model.explained_variance.len(), 2);
1095 }
1096 }
1097}