scirs2_ndimage/advanced_fusion_algorithms/
config.rs

1//! Configuration and data structures for advanced fusion algorithms
2//!
3//! This module contains all the configuration types, data structures, and enums
4//! used throughout the advanced fusion processing system.
5
6use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, Array5};
7use scirs2_core::numeric::Complex;
8use std::collections::{BTreeMap, HashMap, VecDeque};
9use std::sync::{Arc, RwLock};
10
11use crate::neuromorphic_computing::NeuromorphicConfig;
12use crate::quantum_inspired::QuantumConfig;
13use crate::quantum_neuromorphic_fusion::QuantumNeuromorphicConfig;
14
15/// Advanced Processing Configuration
16#[derive(Debug, Clone)]
17pub struct AdvancedConfig {
18    /// Quantum computing parameters
19    pub quantum: QuantumConfig,
20    /// Neuromorphic computing parameters
21    pub neuromorphic: NeuromorphicConfig,
22    /// Quantum-neuromorphic fusion parameters
23    pub quantum_neuromorphic: QuantumNeuromorphicConfig,
24    /// Consciousness simulation depth
25    pub consciousness_depth: usize,
26    /// Meta-learning adaptation rate
27    pub meta_learning_rate: f64,
28    /// Advanced-dimensional processing dimensions
29    pub advanced_dimensions: usize,
30    /// Temporal processing window
31    pub temporal_window: usize,
32    /// Self-organization enabled
33    pub self_organization: bool,
34    /// Quantum consciousness simulation
35    pub quantum_consciousness: bool,
36    /// Advanced-efficiency optimization
37    pub advanced_efficiency: bool,
38    /// Causal inference depth
39    pub causal_depth: usize,
40    /// Multi-scale processing levels
41    pub multi_scale_levels: usize,
42    /// Adaptive resource allocation
43    pub adaptive_resources: bool,
44    /// Adaptive learning capability
45    pub adaptive_learning: bool,
46    /// Quantum coherence threshold (0.0 to 1.0)
47    pub quantum_coherence_threshold: f64,
48    /// Neuromorphic plasticity factor (0.0 to 1.0)
49    pub neuromorphic_plasticity: f64,
50    /// Advanced processing intensity (0.0 to 1.0)
51    pub advanced_processing_intensity: f64,
52}
53
54impl Default for AdvancedConfig {
55    fn default() -> Self {
56        Self {
57            quantum: QuantumConfig::default(),
58            neuromorphic: NeuromorphicConfig::default(),
59            quantum_neuromorphic: QuantumNeuromorphicConfig::default(),
60            consciousness_depth: 8,
61            meta_learning_rate: 0.01,
62            advanced_dimensions: 12,
63            temporal_window: 64,
64            self_organization: true,
65            quantum_consciousness: true,
66            advanced_efficiency: true,
67            causal_depth: 16,
68            multi_scale_levels: 10,
69            adaptive_resources: true,
70            adaptive_learning: true,
71            quantum_coherence_threshold: 0.85,
72            neuromorphic_plasticity: 0.1,
73            advanced_processing_intensity: 0.75,
74        }
75    }
76}
77
78/// Advanced Processing State
79#[derive(Debug, Clone)]
80pub struct AdvancedState {
81    /// Quantum consciousness amplitudes
82    pub consciousness_amplitudes: Array4<Complex<f64>>,
83    /// Meta-learning parameters
84    pub meta_parameters: Array2<f64>,
85    /// Self-organizing network topology
86    pub network_topology: Arc<RwLock<NetworkTopology>>,
87    /// Temporal memory bank
88    pub temporal_memory: VecDeque<Array3<f64>>,
89    /// Causal relationship graph
90    pub causal_graph: BTreeMap<usize, Vec<CausalRelation>>,
91    /// Advanced-dimensional feature space
92    pub advancedfeatures: Array5<f64>,
93    /// Resource allocation state
94    pub resource_allocation: ResourceState,
95    /// Processing efficiency metrics
96    pub efficiencymetrics: EfficiencyMetrics,
97    /// Number of processing cycles
98    pub processing_cycles: u64,
99}
100
101/// Self-Organizing Network Topology
102#[derive(Debug, Clone)]
103pub struct NetworkTopology {
104    /// Node connections
105    pub connections: HashMap<usize, Vec<Connection>>,
106    /// Node properties
107    pub nodes: Vec<NetworkNode>,
108    /// Global network properties
109    pub global_properties: NetworkProperties,
110}
111
112/// Network Node
113#[derive(Debug, Clone)]
114pub struct NetworkNode {
115    /// Node ID
116    pub id: usize,
117    /// Quantum state
118    pub quantumstate: Array1<Complex<f64>>,
119    /// Classical state
120    pub classicalstate: Array1<f64>,
121    /// Learning parameters
122    pub learning_params: Array1<f64>,
123    /// Activation function type
124    pub activation_type: ActivationType,
125    /// Self-organization strength
126    pub self_org_strength: f64,
127}
128
129/// Network Connection
130#[derive(Debug, Clone)]
131pub struct Connection {
132    /// Target node ID
133    pub target: usize,
134    /// Connection weight (complex for quantum effects)
135    pub weight: Complex<f64>,
136    /// Connection type
137    pub connection_type: ConnectionType,
138    /// Plasticity parameters
139    pub plasticity: PlasticityParameters,
140}
141
142/// Connection Types
143#[derive(Debug, Clone)]
144pub enum ConnectionType {
145    Excitatory,
146    Inhibitory,
147    Quantum,
148    QuantumEntangled,
149    Modulatory,
150    SelfOrganizing,
151    Causal,
152    Temporal,
153}
154
155/// Activation Function Types
156#[derive(Debug, Clone)]
157pub enum ActivationType {
158    Sigmoid,
159    Tanh,
160    ReLU,
161    Swish,
162    QuantumSigmoid,
163    BiologicalSpike,
164    ConsciousnessGate,
165    AdvancedActivation,
166}
167
168/// Plasticity Parameters
169#[derive(Debug, Clone)]
170pub struct PlasticityParameters {
171    /// Learning rate
172    pub learning_rate: f64,
173    /// Decay rate
174    pub decay_rate: f64,
175    /// Quantum coherence factor
176    pub quantum_coherence: f64,
177    /// Biological time constant
178    pub bio_time_constant: f64,
179}
180
181/// Network Global Properties
182#[derive(Debug, Clone)]
183pub struct NetworkProperties {
184    /// Global coherence measure
185    pub coherence: f64,
186    /// Self-organization index
187    pub self_organization_index: f64,
188    /// Consciousness emergence measure
189    pub consciousness_emergence: f64,
190    /// Processing efficiency
191    pub efficiency: f64,
192}
193
194/// Causal Relation
195#[derive(Debug, Clone)]
196pub struct CausalRelation {
197    /// Source event
198    pub source: usize,
199    /// Target event
200    pub target: usize,
201    /// Causal strength
202    pub strength: f64,
203    /// Temporal delay
204    pub delay: usize,
205    /// Confidence level
206    pub confidence: f64,
207}
208
209/// Resource Allocation State
210#[derive(Debug, Clone)]
211pub struct ResourceState {
212    /// CPU allocation
213    pub cpu_allocation: Vec<f64>,
214    /// Memory allocation
215    pub memory_allocation: f64,
216    /// GPU allocation (if available)
217    pub gpu_allocation: Option<f64>,
218    /// Quantum processing allocation (if available)
219    pub quantum_allocation: Option<f64>,
220    /// Adaptive allocation history
221    pub allocationhistory: VecDeque<AllocationSnapshot>,
222}
223
224/// Allocation Snapshot
225#[derive(Debug, Clone)]
226pub struct AllocationSnapshot {
227    /// Timestamp
228    pub timestamp: usize,
229    /// Resource utilization
230    pub utilization: HashMap<String, f64>,
231    /// Performance metrics
232    pub performance: f64,
233    /// Efficiency score
234    pub efficiency: f64,
235}
236
237/// Efficiency Metrics
238#[derive(Debug, Clone)]
239pub struct EfficiencyMetrics {
240    /// Processing speed (operations per second)
241    pub ops_per_second: f64,
242    /// Memory efficiency (utilization ratio)
243    pub memory_efficiency: f64,
244    /// Energy efficiency (operations per watt)
245    pub energy_efficiency: f64,
246    /// Quality efficiency (quality per resource)
247    pub quality_efficiency: f64,
248    /// Temporal efficiency (real-time processing ratio)
249    pub temporal_efficiency: f64,
250}
251
252/// Quantum Consciousness Evolution System
253#[derive(Debug, Clone)]
254pub struct QuantumConsciousnessEvolution {
255    /// Consciousness evolution history
256    pub evolutionhistory: VecDeque<ConsciousnessState>,
257    /// Evolution rate parameters
258    pub evolution_rate: f64,
259    /// Consciousness complexity metrics
260    pub complexitymetrics: ConsciousnessComplexity,
261    /// Quantum coherence optimization engine
262    pub coherence_optimizer: QuantumCoherenceOptimizer,
263    /// Evolutionary selection pressure
264    pub selection_pressure: f64,
265    /// Consciousness emergence threshold
266    pub emergence_threshold: f64,
267}
268
269/// Consciousness State
270#[derive(Debug, Clone)]
271pub struct ConsciousnessState {
272    /// Consciousness level (0.0 to 1.0)
273    pub level: f64,
274    /// Quantum coherence quality
275    pub coherence_quality: f64,
276    /// Information integration measure
277    pub phi_measure: f64,
278    /// Attention focus strength
279    pub attention_strength: f64,
280    /// Self-awareness index
281    pub self_awareness: f64,
282    /// Timestamp of state
283    pub timestamp: usize,
284}
285
286/// Consciousness Complexity
287#[derive(Debug, Clone)]
288pub struct ConsciousnessComplexity {
289    /// Integrated information
290    pub integrated_information: f64,
291    /// Causal structure complexity
292    pub causal_complexity: f64,
293    /// Temporal coherence measure
294    pub temporal_coherence: f64,
295    /// Hierarchical organization index
296    pub hierarchical_index: f64,
297    /// Emergent property strength
298    pub emergence_strength: f64,
299}
300
301/// Quantum Coherence Optimizer
302#[derive(Debug, Clone)]
303pub struct QuantumCoherenceOptimizer {
304    /// Coherence maintenance strategies
305    pub strategies: Vec<CoherenceStrategy>,
306    /// Optimization parameters
307    pub optimization_params: HashMap<String, f64>,
308    /// Performance history
309    pub performancehistory: VecDeque<f64>,
310}
311
312/// Coherence Strategy
313#[derive(Debug, Clone)]
314pub enum CoherenceStrategy {
315    /// Error correction based coherence preservation
316    ErrorCorrection {
317        threshold: f64,
318        correction_rate: f64,
319    },
320    /// Decoherence suppression
321    DecoherenceSuppression { suppression_strength: f64 },
322    /// Entanglement purification
323    EntanglementPurification { purification_cycles: usize },
324    /// Dynamical decoupling
325    DynamicalDecoupling { pulse_frequency: f64 },
326    /// Quantum Zeno effect
327    QuantumZeno { measurement_frequency: f64 },
328}
329
330/// Enhanced Meta-Learning System
331#[derive(Debug, Clone)]
332pub struct EnhancedMetaLearningSystem {
333    /// Temporal memory fusion engine
334    pub temporal_memory_fusion: TemporalMemoryFusion,
335    /// Hierarchical learning structure
336    pub hierarchical_learner: HierarchicalLearner,
337    /// Strategy evolution engine
338    pub strategy_evolution: StrategyEvolution,
339    /// Meta-learning performance tracker
340    pub performance_tracker: MetaLearningTracker,
341    /// Adaptive memory consolidation
342    pub memory_consolidation: AdaptiveMemoryConsolidation,
343}
344
345/// Temporal Memory Fusion
346#[derive(Debug, Clone)]
347pub struct TemporalMemoryFusion {
348    /// Short-term memory bank
349    pub short_term_memory: VecDeque<MemoryTrace>,
350    /// Long-term memory bank
351    pub long_term_memory: HashMap<String, ConsolidatedMemory>,
352    /// Memory fusion weights
353    pub fusion_weights: Array1<f64>,
354    /// Temporal decay factors
355    pub decay_factors: Array1<f64>,
356    /// Memory attention mechanism
357    pub attention_mechanism: MemoryAttention,
358}
359
360/// Memory Trace
361#[derive(Debug, Clone)]
362pub struct MemoryTrace {
363    /// Memory content
364    pub content: Array2<f64>,
365    /// Context information
366    pub context: MemoryContext,
367    /// Importance score
368    pub importance: f64,
369    /// Timestamp
370    pub timestamp: usize,
371    /// Access frequency
372    pub access_count: usize,
373}
374
375/// Memory Context
376#[derive(Debug, Clone)]
377pub struct MemoryContext {
378    /// Processing operation type
379    pub operation_type: String,
380    /// Data characteristics
381    pub data_characteristics: Vec<f64>,
382    /// Performance outcome
383    pub performance_outcome: f64,
384    /// Environmental conditions
385    pub environment: HashMap<String, f64>,
386}
387
388/// Consolidated Memory
389#[derive(Debug, Clone)]
390pub struct ConsolidatedMemory {
391    /// Consolidated representation
392    pub representation: Array2<f64>,
393    /// Memory strength
394    pub strength: f64,
395    /// Generalization scope
396    pub generalization_scope: f64,
397    /// Usage statistics
398    pub usage_stats: MemoryUsageStats,
399}
400
401/// Memory Usage Statistics
402#[derive(Debug, Clone)]
403pub struct MemoryUsageStats {
404    /// Total access count
405    pub total_accesses: usize,
406    /// Success rate
407    pub success_rate: f64,
408    /// Average performance improvement
409    pub avg_improvement: f64,
410    /// Last access timestamp
411    pub last_access: usize,
412}
413
414/// Memory Attention
415#[derive(Debug, Clone)]
416pub struct MemoryAttention {
417    /// Attention weights for different memory types
418    pub attention_weights: HashMap<String, f64>,
419    /// Focus threshold
420    pub focus_threshold: f64,
421    /// Attention adaptation rate
422    pub adaptation_rate: f64,
423}
424
425/// Hierarchical Learner
426#[derive(Debug, Clone)]
427pub struct HierarchicalLearner {
428    /// Learning hierarchy levels
429    pub hierarchy_levels: Vec<LearningLevel>,
430    /// Inter-level connections
431    pub level_connections: Array2<f64>,
432    /// Hierarchical attention
433    pub hierarchical_attention: Array1<f64>,
434}
435
436/// Learning Level
437#[derive(Debug, Clone)]
438pub struct LearningLevel {
439    /// Level identifier
440    pub level_id: usize,
441    /// Abstraction degree
442    pub abstraction_degree: f64,
443    /// Learning strategies at this level
444    pub strategies: Vec<LearningStrategy>,
445    /// Performance metrics
446    pub performancemetrics: LevelPerformanceMetrics,
447}
448
449/// Learning Strategy
450#[derive(Debug, Clone)]
451pub struct LearningStrategy {
452    /// Strategy name
453    pub name: String,
454    /// Strategy parameters
455    pub parameters: HashMap<String, f64>,
456    /// Success rate
457    pub success_rate: f64,
458    /// Adaptation history
459    pub adaptationhistory: VecDeque<StrategyAdaptation>,
460}
461
462/// Strategy Adaptation
463#[derive(Debug, Clone)]
464pub struct StrategyAdaptation {
465    /// Parameter changes
466    pub parameter_changes: HashMap<String, f64>,
467    /// Performance impact
468    pub performance_impact: f64,
469    /// Context conditions
470    pub context: HashMap<String, f64>,
471    /// Timestamp
472    pub timestamp: usize,
473}
474
475/// Level Performance Metrics
476#[derive(Debug, Clone)]
477pub struct LevelPerformanceMetrics {
478    /// Learning rate
479    pub learning_rate: f64,
480    /// Generalization ability
481    pub generalization_ability: f64,
482    /// Adaptation speed
483    pub adaptation_speed: f64,
484    /// Stability measure
485    pub stability: f64,
486}
487
488/// Strategy Evolution
489#[derive(Debug, Clone)]
490pub struct StrategyEvolution {
491    /// Strategy population
492    pub strategy_population: Vec<EvolutionaryStrategy>,
493    /// Selection mechanisms
494    pub selection_mechanisms: Vec<SelectionMechanism>,
495    /// Mutation parameters
496    pub mutation_params: MutationParameters,
497    /// Evolution history
498    pub evolutionhistory: VecDeque<EvolutionGeneration>,
499}
500
501/// Evolutionary Strategy
502#[derive(Debug, Clone)]
503pub struct EvolutionaryStrategy {
504    /// Strategy genome
505    pub genome: Array1<f64>,
506    /// Fitness score
507    pub fitness: f64,
508    /// Age (generations survived)
509    pub age: usize,
510    /// Parent lineage
511    pub lineage: Vec<usize>,
512}
513
514/// Selection Mechanism
515#[derive(Debug, Clone)]
516pub enum SelectionMechanism {
517    /// Tournament selection
518    Tournament { tournament_size: usize },
519    /// Roulette wheel selection
520    RouletteWheel,
521    /// Rank-based selection
522    RankBased { selection_pressure: f64 },
523    /// Elite selection
524    Elite { elite_fraction: f64 },
525}
526
527/// Mutation Parameters
528#[derive(Debug, Clone)]
529pub struct MutationParameters {
530    /// Mutation rate
531    pub mutation_rate: f64,
532    /// Mutation strength
533    pub mutation_strength: f64,
534    /// Adaptive mutation enabled
535    pub adaptive_mutation: bool,
536    /// Mutation distribution
537    pub mutation_distribution: MutationDistribution,
538}
539
540/// Mutation Distribution
541#[derive(Debug, Clone)]
542pub enum MutationDistribution {
543    /// Gaussian mutation
544    Gaussian { sigma: f64 },
545    /// Uniform mutation
546    Uniform { range: f64 },
547    /// Cauchy mutation
548    Cauchy { scale: f64 },
549    /// Adaptive distribution
550    Adaptive,
551}
552
553/// Evolution Generation
554#[derive(Debug, Clone)]
555pub struct EvolutionGeneration {
556    /// Generation number
557    pub generation: usize,
558    /// Best fitness achieved
559    pub best_fitness: f64,
560    /// Average fitness
561    pub average_fitness: f64,
562    /// Diversity measure
563    pub diversity: f64,
564    /// Notable mutations
565    pub mutations: Vec<String>,
566}
567
568/// Meta-Learning Tracker
569#[derive(Debug, Clone)]
570pub struct MetaLearningTracker {
571    /// Learning performance history
572    pub performancehistory: VecDeque<MetaLearningPerformance>,
573    /// Strategy effectiveness tracking
574    pub strategy_effectiveness: HashMap<String, StrategyEffectiveness>,
575    /// Learning curve analysis
576    pub learning_curves: HashMap<String, LearningCurve>,
577}
578
579/// Meta-Learning Performance
580#[derive(Debug, Clone)]
581pub struct MetaLearningPerformance {
582    /// Task identifier
583    pub task_id: String,
584    /// Performance score
585    pub performance_score: f64,
586    /// Learning time
587    pub learning_time: f64,
588    /// Generalization score
589    pub generalization_score: f64,
590    /// Resource usage
591    pub resource_usage: f64,
592}
593
594/// Strategy Effectiveness
595#[derive(Debug, Clone)]
596pub struct StrategyEffectiveness {
597    /// Average performance
598    pub avg_performance: f64,
599    /// Consistency measure
600    pub consistency: f64,
601    /// Robustness score
602    pub robustness: f64,
603    /// Efficiency rating
604    pub efficiency: f64,
605}
606
607/// Learning Curve
608#[derive(Debug, Clone)]
609pub struct LearningCurve {
610    /// Performance over time
611    pub performance_timeline: Vec<f64>,
612    /// Learning rate trajectory
613    pub learning_rate_timeline: Vec<f64>,
614    /// Convergence point
615    pub convergence_point: Option<usize>,
616}
617
618/// Adaptive Memory Consolidation
619#[derive(Debug, Clone)]
620pub struct AdaptiveMemoryConsolidation {
621    /// Consolidation strategies
622    pub consolidation_strategies: Vec<ConsolidationStrategy>,
623    /// Memory retention policies
624    pub retention_policies: HashMap<String, RetentionPolicy>,
625    /// Consolidation effectiveness metrics
626    pub effectiveness_metrics: ConsolidationMetrics,
627}
628
629/// Consolidation Strategy
630#[derive(Debug, Clone)]
631pub enum ConsolidationStrategy {
632    /// Replay-based consolidation
633    ReplayBased { replay_frequency: f64 },
634    /// Interference-based consolidation
635    InterferenceBased { interference_threshold: f64 },
636    /// Importance-weighted consolidation
637    ImportanceWeighted { importance_threshold: f64 },
638    /// Temporal-decay consolidation
639    TemporalDecay { decay_rate: f64 },
640}
641
642/// Retention Policy
643#[derive(Debug, Clone)]
644pub struct RetentionPolicy {
645    /// Maximum retention time
646    pub max_retention_time: usize,
647    /// Importance-based retention
648    pub importance_based: bool,
649    /// Access-frequency based retention
650    pub frequency_based: bool,
651    /// Recency factor
652    pub recency_factor: f64,
653}
654
655/// Consolidation Metrics
656#[derive(Debug, Clone)]
657pub struct ConsolidationMetrics {
658    /// Memory utilization efficiency
659    pub memory_utilization: f64,
660    /// Consolidation success rate
661    pub consolidation_success_rate: f64,
662    /// Average consolidation time
663    pub avg_consolidation_time: f64,
664    /// Memory interference reduction
665    pub interference_reduction: f64,
666}
667
668/// Quantum-Aware Resource Scheduler
669#[derive(Debug, Clone)]
670pub struct QuantumAwareResourceScheduler {
671    /// Quantum resource pool
672    pub quantum_resource_pool: QuantumResourcePool,
673    /// Quantum scheduling algorithms
674    pub scheduling_algorithms: Vec<QuantumSchedulingAlgorithm>,
675    /// Quantum load balancer
676    pub quantum_load_balancer: QuantumLoadBalancer,
677    /// Resource entanglement graph
678    pub entanglement_graph: ResourceEntanglementGraph,
679    /// Quantum optimization engine
680    pub optimization_engine: QuantumOptimizationEngine,
681    /// Performance monitoring
682    pub performance_monitor: QuantumPerformanceMonitor,
683}
684
685/// Quantum Resource Pool
686#[derive(Debug, Clone)]
687pub struct QuantumResourcePool {
688    /// Available quantum processing units
689    pub quantum_units: Vec<QuantumProcessingUnit>,
690    /// Classical processing units
691    pub classical_units: Vec<ClassicalProcessingUnit>,
692    /// Hybrid quantum-classical units
693    pub hybrid_units: Vec<HybridProcessingUnit>,
694    /// Resource allocation matrix
695    pub allocation_matrix: Array2<Complex<f64>>,
696    /// Quantum coherence time tracking
697    pub coherence_times: HashMap<String, f64>,
698}
699
700/// Quantum Processing Unit
701#[derive(Debug, Clone)]
702pub struct QuantumProcessingUnit {
703    /// Unit identifier
704    pub id: String,
705    /// Number of qubits
706    pub qubit_count: usize,
707    /// Coherence time
708    pub coherence_time: f64,
709    /// Gate fidelity
710    pub gate_fidelity: f64,
711    /// Current quantum state
712    pub quantumstate: Array1<Complex<f64>>,
713    /// Available operations
714    pub available_operations: Vec<QuantumOperation>,
715    /// Utilization level
716    pub utilization: f64,
717}
718
719/// Classical Processing Unit
720#[derive(Debug, Clone)]
721pub struct ClassicalProcessingUnit {
722    /// Unit identifier
723    pub id: String,
724    /// Processing power (FLOPS)
725    pub processing_power: f64,
726    /// Memory capacity
727    pub memory_capacity: usize,
728    /// Current load
729    pub current_load: f64,
730    /// Available algorithms
731    pub available_algorithms: Vec<String>,
732}
733
734/// Hybrid Processing Unit
735#[derive(Debug, Clone)]
736pub struct HybridProcessingUnit {
737    /// Unit identifier
738    pub id: String,
739    /// Quantum component
740    pub quantum_component: QuantumProcessingUnit,
741    /// Classical component
742    pub classical_component: ClassicalProcessingUnit,
743    /// Coupling strength
744    pub coupling_strength: f64,
745}
746
747/// Quantum Operation
748#[derive(Debug, Clone)]
749pub enum QuantumOperation {
750    /// Single qubit gate
751    SingleQubit { gate_type: String, fidelity: f64 },
752    /// Two qubit gate
753    TwoQubit { gate_type: String, fidelity: f64 },
754    /// Measurement
755    Measurement { measurement_type: String },
756    /// Custom operation
757    Custom {
758        operation: String,
759        parameters: HashMap<String, f64>,
760    },
761}
762
763/// Workload Characteristics
764#[derive(Debug, Clone)]
765pub struct WorkloadCharacteristics {
766    /// Task types and their quantum requirements
767    pub task_types: HashMap<String, QuantumTaskRequirements>,
768    /// Workload intensity over time
769    pub intensity_pattern: Vec<f64>,
770    /// Data dependencies
771    pub dependencies: Vec<(String, String)>,
772    /// Performance requirements
773    pub performance_requirements: PerformanceRequirements,
774}
775
776/// Quantum Task Requirements
777#[derive(Debug, Clone)]
778pub struct QuantumTaskRequirements {
779    /// Required qubits
780    pub qubit_requirement: usize,
781    /// Coherence time requirement
782    pub coherence_requirement: f64,
783    /// Gate operations needed
784    pub gate_operations: Vec<String>,
785    /// Classical computation ratio
786    pub classical_ratio: f64,
787}
788
789/// Performance Requirements
790#[derive(Debug, Clone)]
791pub struct PerformanceRequirements {
792    /// Maximum acceptable latency
793    pub max_latency: f64,
794    /// Minimum throughput requirement
795    pub min_throughput: f64,
796    /// Accuracy requirements
797    pub accuracy_requirement: f64,
798    /// Energy constraints
799    pub energy_budget: f64,
800}
801
802/// Resource Scheduling Decision
803#[derive(Debug, Clone)]
804pub struct ResourceSchedulingDecision {
805    /// Optimal resource allocation
806    pub resource_allocation: QuantumResourceAllocation,
807    /// Load balancing decisions
808    pub load_balancing: QuantumLoadBalancingDecision,
809    /// Task scheduling plan
810    pub task_schedule: QuantumTaskSchedule,
811    /// Expected performance metrics
812    pub performancemetrics: QuantumPerformanceMetrics,
813    /// Quantum coherence preservation level
814    pub quantum_coherence_preservation: f64,
815    /// Estimated performance improvement
816    pub estimated_performance_improvement: f64,
817}
818
819// Note: QuantumSchedulingAlgorithm is defined as an enum later in this file
820
821/// Quantum Load Balancer
822#[derive(Debug, Clone)]
823pub struct QuantumLoadBalancer {
824    pub strategies: Vec<QuantumLoadBalancingStrategy>,
825    pub load_distribution: Array1<f64>,
826    pub entanglement_connections: HashMap<String, Vec<String>>,
827    pub load_predictor: QuantumLoadPredictor,
828    // Legacy fields for compatibility
829    pub strategy: String,
830    pub load_metrics: HashMap<String, f64>,
831}
832
833/// Resource Entanglement Graph
834#[derive(Debug, Clone)]
835pub struct ResourceEntanglementGraph {
836    pub adjacency_matrix: Array2<f64>,
837    pub nodes: HashMap<String, usize>,
838    pub entanglement_strengths: HashMap<(String, String), f64>,
839    pub decoherence_tracking: HashMap<(String, String), f64>,
840    // Legacy field for compatibility
841    pub connections: HashMap<String, Vec<String>>,
842}
843
844/// Quantum Optimization Engine
845#[derive(Debug, Clone)]
846pub struct QuantumOptimizationEngine {
847    pub algorithms: Vec<String>,
848    pub optimizationstate: QuantumOptimizationState,
849    pub optimizationhistory: VecDeque<f64>,
850    pub convergence_criteria: ConvergenceCriteria,
851    // Legacy field for compatibility
852    pub optimization_history: VecDeque<f64>,
853}
854
855/// Quantum Performance Monitor
856#[derive(Debug, Clone)]
857pub struct QuantumPerformanceMonitor {
858    pub metrics: QuantumPerformanceMetrics,
859    pub monitoring_interval: f64,
860}
861
862/// Quantum Resource Allocation
863#[derive(Debug, Clone)]
864pub struct QuantumResourceAllocation {
865    pub quantum_allocations: HashMap<String, f64>,
866    pub classical_allocations: HashMap<String, f64>,
867}
868
869/// Quantum Load Balancing Decision
870#[derive(Debug, Clone)]
871pub struct QuantumLoadBalancingDecision {
872    pub load_distribution: HashMap<String, f64>,
873    pub balancing_strategy: String,
874}
875
876/// Quantum Task Schedule
877#[derive(Debug, Clone)]
878pub struct QuantumTaskSchedule {
879    pub scheduled_tasks: Vec<(String, f64)>,
880    pub execution_order: Vec<String>,
881}
882
883/// Quantum Performance Metrics
884#[derive(Debug, Clone)]
885pub struct QuantumPerformanceMetrics {
886    /// Quantum speedup factor
887    pub quantum_speedup: f64,
888    /// Quantum advantage ratio
889    pub quantum_advantage_ratio: f64,
890    /// Coherence efficiency
891    pub coherence_efficiency: f64,
892    /// Entanglement utilization
893    pub entanglement_utilization: f64,
894    /// Quantum error rate
895    pub quantum_error_rate: f64,
896    /// Resource efficiency
897    pub resource_efficiency: f64,
898    /// Legacy fields for compatibility
899    pub throughput: f64,
900    pub latency: f64,
901    pub error_rate: f64,
902    pub resource_utilization: f64,
903}
904
905/// Annealing Schedule
906#[derive(Debug, Clone)]
907pub struct AnnealingSchedule {
908    pub initial_temperature: f64,
909    pub final_temperature: f64,
910    pub steps: usize,
911    pub cooling_rate: f64,
912}
913
914/// Optimization Target
915#[derive(Debug, Clone)]
916pub enum OptimizationTarget {
917    MinimizeTime,
918    MinimizeEnergy,
919    MaximizeAccuracy,
920}
921
922/// Quantum Load Predictor
923#[derive(Debug, Clone)]
924pub struct QuantumLoadPredictor {
925    pub quantum_nn: QuantumNeuralNetwork,
926    pub prediction_horizon: usize,
927    pub historical_data: VecDeque<f64>,
928    pub accuracy_metrics: PredictionAccuracyMetrics,
929}
930
931/// Quantum Neural Network
932#[derive(Debug, Clone)]
933pub struct QuantumNeuralNetwork {
934    pub layers: Vec<Array2<Complex<f64>>>,
935    pub classical_layers: Vec<Array2<f64>>,
936    pub training_params: QuantumTrainingParameters,
937}
938
939/// Quantum Training Parameters
940#[derive(Debug, Clone)]
941pub struct QuantumTrainingParameters {
942    pub learning_rate: f64,
943    pub batch_size: usize,
944    pub epochs: usize,
945    pub optimizer: QuantumOptimizer,
946}
947
948/// Quantum Optimizer
949#[derive(Debug, Clone)]
950pub enum QuantumOptimizer {
951    QuantumAdam { beta1: f64, beta2: f64 },
952    QuantumSGD { momentum: f64 },
953}
954
955/// Prediction Accuracy Metrics
956#[derive(Debug, Clone)]
957pub struct PredictionAccuracyMetrics {
958    pub mae: f64,
959    pub rmse: f64,
960    pub r_squared: f64,
961    pub quantum_fidelity: f64,
962}
963
964/// Quantum Optimization State
965#[derive(Debug, Clone)]
966pub struct QuantumOptimizationState {
967    pub parameters: Array1<f64>,
968    pub objective_value: f64,
969    pub quantumstate: Array1<Complex<f64>>,
970    pub gradient: Array1<f64>,
971    pub iteration: usize,
972}
973
974/// Convergence Criteria
975#[derive(Debug, Clone)]
976pub struct ConvergenceCriteria {
977    pub max_iterations: usize,
978    pub objective_tolerance: f64,
979    pub parameter_tolerance: f64,
980    pub gradient_tolerance: f64,
981}
982
983/// Real Time Quantum Monitor
984#[derive(Debug, Clone)]
985pub struct RealTimeQuantumMonitor {
986    pub monitoring_frequency: f64,
987    pub currentstates: HashMap<String, f64>,
988    pub alerts: Vec<String>,
989    pub monitoringhistory: VecDeque<HashMap<String, f64>>,
990}
991
992/// Quantum Performance Predictor
993#[derive(Debug, Clone)]
994pub struct QuantumPerformancePredictor {
995    pub prediction_model: QuantumPredictionModel,
996    pub prediction_horizon: usize,
997    pub prediction_accuracy: f64,
998}
999
1000/// Quantum Prediction Model
1001#[derive(Debug, Clone)]
1002pub struct QuantumPredictionModel {
1003    pub model_type: String,
1004    pub parameters: Array2<f64>,
1005    pub training_data: Vec<f64>,
1006    pub performancemetrics: PredictionAccuracyMetrics,
1007}
1008
1009/// Quantum Anomaly Detector
1010#[derive(Debug, Clone)]
1011pub struct QuantumAnomalyDetector {
1012    pub detection_algorithms: Vec<QuantumAnomalyAlgorithm>,
1013    pub anomaly_threshold: f64,
1014    pub baselines: HashMap<String, f64>,
1015    pub detected_anomalies: VecDeque<String>,
1016}
1017
1018/// Quantum Anomaly Algorithm
1019#[derive(Debug, Clone)]
1020pub enum QuantumAnomalyAlgorithm {
1021    QuantumIsolationForest {
1022        tree_count: usize,
1023        sample_size: usize,
1024    },
1025    QuantumSVM {
1026        kernel: String,
1027        gamma: f64,
1028    },
1029}
1030
1031/// Quantum Load Balancing Strategy
1032#[derive(Debug, Clone)]
1033pub enum QuantumLoadBalancingStrategy {
1034    QuantumSuperposition {
1035        superposition_weights: Array1<Complex<f64>>,
1036        measurement_basis: String,
1037    },
1038    QuantumEntanglement {
1039        entanglement_pairs: Vec<(String, String)>,
1040        coupling_strength: f64,
1041    },
1042}
1043
1044/// Quantum Scheduling Algorithm
1045#[derive(Debug, Clone)]
1046pub enum QuantumSchedulingAlgorithm {
1047    QuantumAnnealing {
1048        annealing_schedule: AnnealingSchedule,
1049        optimization_target: OptimizationTarget,
1050    },
1051    QAOA {
1052        layers: usize,
1053        mixing_angles: Vec<f64>,
1054        cost_angles: Vec<f64>,
1055    },
1056}
1057
1058impl Default for QuantumAwareResourceScheduler {
1059    fn default() -> Self {
1060        Self {
1061            quantum_resource_pool: QuantumResourcePool {
1062                quantum_units: Vec::new(),
1063                classical_units: Vec::new(),
1064                hybrid_units: Vec::new(),
1065                allocation_matrix: Array2::eye(4),
1066                coherence_times: HashMap::new(),
1067            },
1068            scheduling_algorithms: vec![
1069                QuantumSchedulingAlgorithm::QuantumAnnealing {
1070                    annealing_schedule: AnnealingSchedule {
1071                        initial_temperature: 1.0,
1072                        final_temperature: 0.01,
1073                        steps: 1000,
1074                        cooling_rate: 0.95,
1075                    },
1076                    optimization_target: OptimizationTarget::MinimizeTime,
1077                },
1078                QuantumSchedulingAlgorithm::QAOA {
1079                    layers: 3,
1080                    mixing_angles: vec![0.5, 0.7, 0.3],
1081                    cost_angles: vec![0.2, 0.8, 0.6],
1082                },
1083            ],
1084            quantum_load_balancer: QuantumLoadBalancer {
1085                strategies: vec![QuantumLoadBalancingStrategy::QuantumSuperposition {
1086                    superposition_weights: Array1::from_elem(4, Complex::new(0.5, 0.0)),
1087                    measurement_basis: "computational".to_string(),
1088                }],
1089                load_distribution: Array1::from_elem(4, 0.25),
1090                entanglement_connections: HashMap::new(),
1091                load_predictor: QuantumLoadPredictor {
1092                    quantum_nn: QuantumNeuralNetwork {
1093                        layers: Vec::new(),
1094                        classical_layers: Vec::new(),
1095                        training_params: QuantumTrainingParameters {
1096                            learning_rate: 0.01,
1097                            batch_size: 32,
1098                            epochs: 100,
1099                            optimizer: QuantumOptimizer::QuantumAdam {
1100                                beta1: 0.9,
1101                                beta2: 0.999,
1102                            },
1103                        },
1104                    },
1105                    prediction_horizon: 10,
1106                    historical_data: VecDeque::new(),
1107                    accuracy_metrics: PredictionAccuracyMetrics {
1108                        mae: 0.0,
1109                        rmse: 0.0,
1110                        r_squared: 0.0,
1111                        quantum_fidelity: 1.0,
1112                    },
1113                },
1114                strategy: "quantum_superposition".to_string(),
1115                load_metrics: HashMap::new(),
1116            },
1117            entanglement_graph: ResourceEntanglementGraph {
1118                adjacency_matrix: Array2::eye(4),
1119                nodes: HashMap::new(),
1120                entanglement_strengths: HashMap::new(),
1121                decoherence_tracking: HashMap::new(),
1122                connections: HashMap::new(),
1123            },
1124            optimization_engine: QuantumOptimizationEngine {
1125                algorithms: Vec::new(),
1126                optimizationstate: QuantumOptimizationState {
1127                    parameters: Array1::zeros(10),
1128                    objective_value: 0.0,
1129                    quantumstate: Array1::from_elem(4, Complex::new(0.5, 0.0)),
1130                    gradient: Array1::zeros(10),
1131                    iteration: 0,
1132                },
1133                optimizationhistory: VecDeque::new(),
1134                convergence_criteria: ConvergenceCriteria {
1135                    max_iterations: 1000,
1136                    objective_tolerance: 1e-6,
1137                    parameter_tolerance: 1e-8,
1138                    gradient_tolerance: 1e-6,
1139                },
1140                optimization_history: VecDeque::new(),
1141            },
1142            performance_monitor: QuantumPerformanceMonitor {
1143                metrics: QuantumPerformanceMetrics {
1144                    quantum_speedup: 1.0,
1145                    quantum_advantage_ratio: 1.0,
1146                    coherence_efficiency: 0.8,
1147                    entanglement_utilization: 0.5,
1148                    quantum_error_rate: 0.01,
1149                    resource_efficiency: 0.7,
1150                    throughput: 1000.0,
1151                    latency: 0.1,
1152                    error_rate: 0.01,
1153                    resource_utilization: 0.7,
1154                },
1155                monitoring_interval: 1.0,
1156            },
1157        }
1158    }
1159}