Expand description
Regression metrics module
This module provides functions for evaluating regression models, including error metrics, correlation metrics, residual analysis, and robust metrics.
Structs§
- Error
Histogram - Structure representing a histogram of residuals
- QQPlot
Data - Structure representing Q-Q plot data for residuals
- Residual
Analysis - Structure representing comprehensive residual analysis
Functions§
- adjusted_
r2_ score - Calculates the adjusted R^2 score
- compute_
robust_ weights - Computes robust weights for regression metrics based on residuals
- concordance_
correlation - Calculates the concordance correlation coefficient (CCC)
- error_
histogram - Calculates a histogram of error/residual values
- explained_
variance_ score - Calculates the explained variance score
- huber_
loss - Calculates the Huber loss
- m_
estimator - Calculates the M-estimator for regression
- max_
error - Calculates the maximum error
- mean_
absolute_ error - Calculates the mean absolute error (MAE)
- mean_
absolute_ percentage_ error - Calculates the mean absolute percentage error (MAPE)
- mean_
gamma_ deviance - Calculates the mean gamma deviance
- mean_
poisson_ deviance - Calculates the mean Poisson deviance
- mean_
squared_ error - Calculates the mean squared error (MSE)
- mean_
squared_ log_ error - Calculates the mean squared logarithmic error (MSLE)
- median_
absolute_ error - Calculates the median absolute error
- normalized_
root_ mean_ squared_ error - Calculates the normalized root mean squared error (NRMSE)
- pearson_
correlation - Calculates the Pearson correlation coefficient between true and predicted values
- qq_
plot_ data - Calculates Q-Q plot data for residuals
- quantile_
loss - Calculates the quantile loss (pinball loss)
- r2_
score - Calculates the R² score (coefficient of determination)
- relative_
absolute_ error - Calculates the relative absolute error (RAE)
- relative_
squared_ error - Calculates the relative squared error (RSE)
- residual_
analysis - Performs comprehensive residual analysis for a regression model
- root_
mean_ squared_ error - Calculates the root mean squared error (RMSE)
- spearman_
correlation - Calculates the Spearman rank correlation coefficient between true and predicted values
- symmetric_
mean_ absolute_ percentage_ error - Calculates the symmetric mean absolute percentage error (SMAPE)
- test_
autocorrelation - Checks for autocorrelation in residuals using Durbin-Watson test
- test_
heteroscedasticity - Checks for heteroscedasticity in residuals using Breusch-Pagan test
- test_
normality - Checks for normality of residuals using Shapiro-Wilk test
- tweedie_
deviance_ score - Calculates the Tweedie deviance score
- weighted_
mean_ squared_ error - Calculates the weighted mean squared error
- weighted_
median_ absolute_ error - Calculates the weighted median absolute error